

Building an Interpretable Natural Language AI Tool based on

Transformer Models and Approaches of Explainable AI

Bachelorarbeit/Masterarbeit

Name des Studiengangs

Wirtschaftsinformatik

Fachbereich 4

vorgelegt von

Lennard Zündorf

Datum:

Berlin, 14.02.2024

Erstgutachter: Frau Prof. Dr. Simbeck

Zweitgutachter: Herr Prof. Dr. Hochstein

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

I

Abstract

English

The rapid advancement of Artificial Intelligence, particularly in the context of transformer-based Large

Language Models, has ushered in a new era in consumer and business software. However, a significant aspect

often overlooked is the integration of Explainable AI, specifically interpretable machine learning approaches.

This thesis explores the relevance and applicability of existing XAI methods to contemporary transformer-

based models, widely used in applications such as ChatGPT. Through the development of an explainable

application prototype, this study assesses the feasibility of integrating XAI techniques into practical, industry-

level applications. To this end, open-source technologies were employed to create a usable chatbot

application prototype that provides decision-making explanations. Despite the successful development of a

functional prototype, challenges remain in achieving user-friendly interpretability, particularly with complex

models. Thus, this study demonstrates the feasibility of integrating XAI into chat applications but also

highlights the vital areas for future research in enhancing post hoc interpretability methods. The prototype

reveals limitations in current post hoc interpretability methods and underscores the need for improved

approaches, especially considering the increasing size and complexity of LLMs.

Deutsch

Die rasante Entwicklung der künstlichen Intelligenz, insbesondere im Zusammenhang mit transformer-

basierten Large Language Models (LLMs), hat eine neue Ära in der Verbraucher- und Unternehmenssoftware

eingeläutet. Ein wichtiger Aspekt, der jedoch oft übersehen wird, ist die Integration von Explainable AI (XAI),

insbesondere von interpretierbaren machine learning Ansätzen. Diese Arbeit untersucht die Relevanz und

Anwendbarkeit bestehender XAI-Methoden auf moderne transformer-basierte Modelle, die in Anwendungen

wie ChatGPT weit verbreitet sind. Durch die Entwicklung eines erklärbaren Anwendungsprototyps bewertet

diese Studie die Machbarkeit der Integration von XAI-Techniken in praktische, industrielle Anwendungen. Zu

diesem Zweck wurden Open-Source-Technologien eingesetzt, um einen brauchbaren Chatbot-

Anwendungsprototyp zu erstellen, der Erklärungen zur Entscheidungsfindung liefert. Trotz der erfolgreichen

Entwicklung eines funktionalen Prototyps bestehen weiterhin Herausforderungen bei der

benutzerfreundlichen Interpretierbarkeit, insbesondere bei komplexen Modellen wie Mistral 7B. Der Prototyp

zeigt die Grenzen aktueller Post-hoc-Interpretationsmethoden auf und unterstreicht den Bedarf an

verbesserten Ansätzen, insbesondere angesichts der zunehmenden Größe und Komplexität von LLMs.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

II

Contents

Table of Abbreviations IV

Table of Figures V

Table Directory VI

1 Introduction 1

1.1 Objectives of This Work 1

1.2 The Importance of Explainable AI 2

2 Fundamentals 3

2.1 Transformer Models 4

2.1.1 Model Differences 5

2.1.2 Large Language Models 6

2.2 Explainable AI 9

2.2.1 Taxonomy of Explainable AI 10

2.2.2 Overview of Interpretability Methods 14

2.2.3 Evaluating Interpretability Methods 20

2.3 Chatbots 21

3 Current State of Research 22

4 Implementation 23

4.1 Used Technologies and Methods 24

4.1.1 Notable Used Technologies 24

4.1.2 Code Quality 26

4.1.3 Evaluation Framework 27

4.2 LLM Interpretability 28

4.2.1 Exploration 29

4.2.2 Evaluation 29

4.3 Application Prototype 30

4.3.1 Application Architecture 31

4.3.2 Interpretability Implementation 32

4.3.3 User Interface 34

4.3.4 Hardware and Hosting 34

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

III

5 Results 35

5.1 LLM Interpretability 35

5.1.1 Explanation Quality 35

5.1.2 Runtime 37

5.2 Implementation Evaluation 39

5.2.1 Qualitative Evaluation 39

5.2.2 Framework Based Evaluation 41

5.3 Discussion 43

5.3.1 Explanation Quality 43

5.3.2 Helpfulness of Explanations 44

5.3.3 Runtime and Scalability 45

6 Conclusion 47

Publication Bibliography VIII

Glossary XVI

Annex XVII

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

IV

Table of Abbreviations

Abbreviation Full Word

AI Artificial Intelligence
LLM Large Language Model
XAI Explainable Artificial Intelligence
NLP Natural Language Processing
UX/UI User Experience / User Interface
7B Seven billion (parameters)
GODEL Grounded Open Dialogue Language Model
LlaMa (2) Large Language Model Meta AI
GPT General Pre-Trained Transformer

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

V

Table of Figures

Figure 1: Visual depiction of the transformers architecture. 5

Figure 2: Graphic showcasing taxonomy of XAI approaches. 14

Figure 3: Visual depiction of SHAP values. 18

Figure 4: Graphic depiction of application architecture. 31

Figure 5: Screenshot of custom explanation visualization. 33

Figure 6: Screenshot of interactive shap text graphic. 33

Figure 7: Sequence attribution graph for Mistral with KernelSHAP. 36

Figure 8: Graphic displaying runtime of different interpretability method and model combinations. 38

Figure 9: Graphic displaying runtime of Shapley Value Sampling with different models. 39

Figure 10: Screenshot of SHAP based explanation. 41

Figure 11: Graphic displaying evaluation scores and score delta. 42

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

VI

Table Directory

Table 1: Overview of different large language models. 9

Table 2: Overview of different interpretability approaches. 15

Table 3: Overview of average helpfulness scores and delta. 43

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

1

1 Introduction

The absence of explanation and interpretability of Artificial Intelligence (AI) has historically been

recognized as a barrier to the adoption of advanced machine learning models into consumer and

business software (Arrieta et al. 2019). However, in the rise of AI chatbots and underlying Large

Language Models (LLM), businesses and research organizations seem unconcerned with Explainable

AI. This is demonstrated by the fact that neither AI-powered software such as ChatGPT1, Claude2,

HuggingChat 3nor widely used AI infrastructure providers like Azure OpenAI Services4 or Amazon AWS

Bedrock5 have integrated principles of Explainable AI (XAI) into their services - specifically, the

integration of approaches of interpretable machine learning like the SHAP framework (Lundberg and

Lee 2017). This group of companies includes model and software developing firms like OpenAI as well

as Fortune 500 companies utilizing these models, as more than 90% of them are building with models

of for example the GPT Family (Field 2023). Since 2022, many new and more powerful LLMs have been

released, propelling progress in Natural Language Processing (NLP) (Zhao et al. 2023b; Loukides 2023).

These breakthroughs have built upon what is, technologically speaking, an already established

advancement in AI: the transformer architecture (Lee 2024; Woodie 2021). At the same time, research

has advanced in other connected fields like AI Governance AI Safety and Ethical AI. However, a

comprehensible explanation for Large Language Model outputs remains elusive (Zhao et al. 2023a).

Given these developments, at least two pertinent questions arise. Firstly, the question of how relevant

and applicable existing XAI methods are to contemporary models used for widely used available

applications like ChatGPT. Secondly, there is the challenge of how these approaches can be integrated

into applications and provide value to application users, if method should prove applicable, as per the

core premise of XAI.. The aim of this study was to explore, evaluate, and implement these questions.

It specifically investigates the potential for implementations of XAI principles and existing approaches

in practical applications based on models with a transformer architecture.

1.1 Objectives of This Work

This study presents an explainable application prototype powered by modern transformer-based LLMs

and machine learning interpretability approaches. Furthermore, it provides an overview of the

1 SEE HTTPS://CHAT.OPENAI.COM/
2 SEE HTTPS://HUGGINGFACE.CO/CHAT/
3 SEE HTTPS://CLAUDE.AI/
4 SEE HTTPS://AZURE.MICROSOFT.COM/EN-US/PRODUCTS/AI-SERVICES/OPENAI-SERVICE/
5 SEE HTTPS://AWS.AMAZON.COM/BEDROCK/

https://chat.openai.com/
https://huggingface.co/chat/
https://claude.ai/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://aws.amazon.com/bedrock/

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

2

prevailing gaps and challenges in deploying interpretability approaches, together with modern

models. This incorporates XAI methodologies that explicitly focus on enhancing the interpretability of

a model's output by utilizing interpretable machine learning. This investigation aimed to assess the

feasibility of integrating XAI techniques into practical, industry-level applications, such as ChatGPT, by

determining the attainability of such an implementation and identifying the associated challenges.

The presented prototype specifically combines state of the art Large Language Models, approaches to

model interpretability from the field of XAI and a modern user experience/interface (UX/UI) into a

usable chatbot application oriented at current market leaders. As preparation to creating this

application prototype, extensive testing and evaluation of different existing approaches was done.

The research approach involved leveraging open-source technologies and adapting and extending

existing contributions to Large Language Models, XAI, Model Interpretability, and UI for Machine

Learning applications. A specific focus was placed on the utilization of open-source software and the

most recent technology stack. This was done because the collaborative nature of open-source

software fosters innovation and accelerated the development of effective XAI approaches. Focusing

on open sources also addresses another key research question: the feasibility of other companies

adopting these tools, ensuring broad accessibility, and democratization in the field of AI.

1.2 The Importance of Explainable AI

The importance of Explainable Artificial Intelligence in today's context, particularly with the rise of

generative AI and Large Language Models, lies in its ability to demystify the decision-making processes

of advanced systems (Molnar 2022; Zhao et al. 2023a). As AI methods become increasingly complex

and powerful, understanding their inner workings, and ensuring that they make decisions in a fair,

ethical, and transparent manner is crucial (Zini and Awad 2023; Arrieta et al. 2019). Through 2023,

generative AI and LLMs have continued to evolve and find applications in various fields (Zhao et al.

2023b). Therefore, the ability to explain and understand their output has become increasingly

significant. XAI not only facilitates trust in these systems but also ensures that their integration into

different sectors is responsible and aligned with ethical standards. This aligns well with the broader

movement towards Responsible AI, where understanding and transparency are key to the successful

adoption and ethical deployment of AI technologies (Arrieta et al. 2019). In regulatory contexts, XAI is

becoming integral to compliance with emerging standards for "trustworthy AI." As the EU AI Act

effectively requires certain AI systems to be transparent and explainable, the Act indirectly supports

the development and implementation of XAI, ensuring that AI technology is used responsibly and

ethically (Antonini 2023).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

3

Overall, it can be noted that XAI is pivotal in today's AI landscape, particularly with the advancement

of generative AI and Large Language Models. This positions XAI not only as an ethical imperative but

as a strategic component in responsible AI development and deployment.

2 Fundamentals

The objectives of this thesis are supported by the following foundational elements, which focus on the

fields of study addressed by the research question. The following theoretical fundamentals include a

concise summary of natural language processing, a description of transformer models and an overview

of the emerging category of Large Language Models. Furthermore, the core of this work, Explainable

AI and methods of interpretable machine learning, will be further explained, exploring the central

concept of Explainable AI and model interpretability, and explaining the fundamental principles and

complex details of the selected interpretability approaches. Finally, a brief overview of chatbot

applications is provided, along with a concise definition of their associated requirements.

This study can be understood somewhat as part of the field of Natural Language Processing (NLP)

which “[...] investigates the use of computers to process or to understand human (i.e., natural)

languages to perform useful tasks.” (Deng and Liu 2018). Natural Language Processing entails the

creation of algorithms and systems capable of comprehending, interpreting, processing, and

simulating human language in a meaningful and valuable manner (Deng and Liu 2018; Lee 2024). As

an interdisciplinary field, NLP draws on linguistics, computer science, and cognitive science to decipher

language details (Lee 2024). Machine learning in NLP focuses on enabling computers to analyze,

understand, and derive meaning from the human language. This approach facilitates the automatic

extraction of linguistic patterns and features, which are crucial for understanding and generating

human language (Deng and Liu 2018). It is used in various applications, including automatic

summarization, translation, sentiment analysis, and speech recognition (Lee 2024). Machine learning

in NLP incorporates various techniques, such as deep learning neural networks, reinforcement

learning, and unsupervised learning, to address the complexities and refinements of natural language.

These techniques enable the development of sophisticated and accurate NLP applications (Deng and

Liu 2018). One of the prime examples of NLP applications is ChatGPT (Lee 2024). Within this

specification, NLP covers various specific tasks and applications. These applications include machine

translation, information extraction, sentiment analysis, and question answering (Lee 2024).

Commonly, language generation is also included in this list of tasks and has recently become one of

the most popular applications (Deng and Liu 2018; Amatriain et al. 2023).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

4

Modern AI-based chat applications rely on machine learning algorithms to support language

generation tasks, specifically, different forms of language modeling, machine translation, and question

answering (Loukides 2023). Text generation is a category of functions that have the goal of

automatically producing human-readable text that is coherent, contextually relevant, and

grammatically correct. Generation involves creating new text outputs, ranging from simple sentences

to complex paragraphs or documents (Deng and Liu 2018). The output is based on specific input cues

or data. In language modeling and chatbot applications, these input cues are usually called prompts

(Yenduri et al. 2023).

The tasks required to power a chat application, language modelling, can be performed using different

machine learning algorithms and approaches (Lee 2024). However, the primary solution for this is

transformer-based models. These sophisticated models and their distinct architecture have set new

benchmarks in the field of NLP, particularly in handling tasks such as language generation, due to their

unique capabilities (Amatriain et al. 2023; Yenduri et al. 2023). These will be further explained

hereafter. They can be considered the underlying technology in most recent advantages in AI based

NLP, i.e. the introduction of models like GPT-4, LlaMa 2 and Mistral, or groundbreaking applications

like ChatGPT and Microsoft Copilot6 (Lee 2024).

2.1 Transformer Models

Transformer models are the latest architectural advancements in deep learning models, and the

critical novel feature of the transformer architecture is the principle of self-attention and its

dependency thereon (Yildirim and Asgari-Chenaghlu 2021; Vaswani et al. 2017). Vaswani et al.

introduce this as a mechanism that allows each position in a sequence to address all other positions,

thereby allowing the model to learn contextual relationships within the sequence (Vaswani et al.

2017). Through self-attention in encoding, decoding, and encoder–decoder attention, transformers

can maintain the context between different tokens across all forward feeding steps of a Neural

Network (Vaswani et al. 2017). Therefore, they can reliably derive dependencies between the input

and output, which is an essential advancement over other deep learning architectures such as primary

Recurrent Neural Networks (RNNs) and Long Short-Term Memory RNNs (LSTMs) (Rothman and Gulli

2022).

6 SEE HTTPS://COPILOT.MICROSOFT.COM/

https://copilot.microsoft.com/

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

5

The original transformer architecture is depicted on the

left (figure 1). This architecture includes an encoder and

decoder block (left-to-right) and visible self-attention

heads inside the blocks – “Masked Multi-Head Attention”

(Rothman and Gulli 2022). Inside the attention heads the

importance of tokens is determined through similarity

values, which informs model predictions by evaluating the

attention placed on each token (Vaswani et al. 2017;

Rothman and Gulli 2022). By combining the self-attention

values of the decoded sequence (inside the lower

attention head) and referencing the encoder-decoder

attention (with the upper attention head), the decoder

can reference more information and (global) context in a prediction (Vaswani et al. 2017; Amatriain

et al. 2023). Conversely, the encoder in traditional architecture can only access its own self attention.

Any model implementing this architecture, or an improvement thereof, can be considered a

transformer model (Amatriain et al. 2023). The architecture, presented in 2017, forms the basis for all

further developments, leading to the current state of AI and Large Language Models (Yenduri et al.

2023). While the transformer architecture can also be used for computer vision or audio tasks

(Amatriain et al. 2023), the focus will be on language transformers. The word transformer will

henceforth be used to reference for these language models based on the transformer architecture.

2.1.1 Model Differences

Transformer language models exhibit three primary architectural distinctions that correlate with the

tasks to which they are best suited (Amatriain et al. 2023). The critical architectural variation is related

to the attention mechanisms available to the model. Transformers possess three distinct attentions:

encoder, decoder, and encoder-decoder attention (Vaswani et al. 2017; Yenduri et al. 2023).

Consequently, depending on the architecture and pretraining, the model can be fine-tuned for various

tasks (Amatriain et al. 2023).

Encoder-decoder models utilize the complete potential of the initially introduced transformer

architecture (Amatriain et al. 2023). They are also known as sequence-to-sequence models. The

original architecture allows the encoder to access all input tokens, whereas the decoder can only

access tokens preceding the current one and generates output auto-regressively (Yildirim and Asgari-

Chenaghlu 2021), which allows the model to generate the output sequence using both the encoder’s

FIGURE 1: VISUAL DEPICTION OF THE TRANSFORMERS

ARCHITECTURE (VASWANI ET AL. 2017).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

6

output and the current decoder attention (Amatriain et al. 2023). As a result, the model can generate

the output text based on the entire given input and existing output and is typically used for tasks such

as summarization or text generation based on the input (Amatriain et al. 2023; Yildirim and Asgari-

Chenaghlu 2021).

Decoder-only transformer models employ a unidirectional transformer architecture that was initially

introduced by the GPT model (Alec Radford et al. 2018). This design replaces encoder-decoder blocks

with decoder-only blocks, ensuring that each token solely attends the preceding tokens (Yenduri et al.

2023; Alec Radford et al. 2018). Additionally, these models are called autoregressive models, as they

are limited to accessing the previous sequence of tokens, precluding future tokens during training

(Yildirim and Asgari-Chenaghlu 2021). By utilizing the pretrained weights of the neural network, these

models can generate the following output tokens (Yenduri et al. 2023). Their nature makes them

particularly well suited for language generation tasks that fall within the domain of causal language

modeling (Amatriain et al. 2023; Yildirim and Asgari-Chenaghlu 2021). Thus, they are widely used in

chat applications (Hariri 2023).

Models that utilize only an encoder are commonly referred to as bidirectional transformers (Yenduri

et al. 2023), or alternatively, auto-encoding models (Yildirim and Asgari-Chenaghlu 2021). The BERT

model, a bidirectional transformer with context-aware embeddings, can maintain attention on tokens

before and after a given token, which is made possible through encoder pretraining by masking

specific input tokens (Devlin et al. 2018). Bidirectional transformers are particularly well suited for

classification tasks and masked language modeling (Yenduri et al. 2023).

2.1.2 Large Language Models

Large Language Models are exclusively based on transformer architecture and possess a model size

that can exceed hundreds of millions of parameters (Naveed et al. 2023; Zhao et al. 2023b). However,

there is no clearly defined threshold for the model size that translates to categorization as LLM (Zhao

et al. 2023b). Large Language Models have been trained using substantial amounts of text data (Zhao

et al. 2023b). Because of their exceptional language understanding capabilities and advanced

functionality, LLMs are the foundation for contemporary AI-driven chat applications, such as ChatGPT,

Claude, Huggingchat, and Microsoft Copilot (Hariri 2023; Naveed et al. 2023).

Large-language models display advanced capabilities compared to smaller models (Zhao et al. 2023b).

These capabilities are commonly described as emergent abilities and are mostly displayed because of

scaling in the model size and training data (Wei et al. 2022).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

7

One of these emergent abilities is that LLMs are particularly adept at understanding complex linguistic

constructs. This allows them to engage in meaningful dialogues and maintain contextual relevance in

text generation (ibid.; Naveed et al. 2023; Zhao et al. 2023). Their proficiency in natural language

processing can be displayed as a comprehensive understanding of a nuanced language (Wang et al.

2023). Furthermore, LLMs are able to transformer knowledge between fields and learn in context

(Zhao et al. 2023b). These are only a few emerged abilities LLMs display; overall, it is important to

understand that models of this category can be considered the cutting edge of machine learning

capabilities in NLP (Wang et al. 2023; Wei et al. 2022).

Pre-Training and Fine-Tuning

Large language models are usually trained on text and fine-tuned for specific applications (Amatriain

et al. 2023). Pre-training and task-specific fine-tuning are the core principles of both transformer

models and LLMs (Yildirim and Asgari-Chenaghlu 2021; Rothman and Gulli 2022). Studies on BERT

(Devlin et al. 2018) and GPT (Alec Radford et al. 2018) introduced the first application of pre-training

and fine-tuning to the transformer architecture (Amatriain et al. 2023).

Although BERT and the original GPT are too small to be considered large language models (Zhao et al.

2023; Wang et al. 2023), they are the base for bigger models and represent two essential architectural

differences in LLMs. The theories introduced by these models can be found in most large language

models and they were the first foundational models that could be fine-tuned for specific NLP tasks

(Amatriain et al. 2023; Yildirim and Asgari-Chenaghlu 2021).

A foundation or foundational model is a basic model trained to handle natural language (Loukides

2023). With the corresponding data, these can be fine-tuned for specific tasks (“downstream tasks”)

within the scope of NLP tasks (Rothman and Gulli 2022). These include text classification, text

generation, or knowledge-based question answering (Amatriain et al. 2023; Yildirim and Asgari-

Chenaghlu 2021). Finetuning can be performed with different approaches. For use in chat applications,

the typical approach to fine-tuning is reinforcement learning from human feedback (RLHF), which is

used in GPT models and based on reinforcement learning with a reward model that itself is trained on

human preferences (Christiano et al. 2017). Other instruction-tuning approaches include instruction

tuning on a instruction dataset and tunes the model based on a input prompt and an expected model

response (Li et al. 2023; Zhang et al. 2023). Chat versions of LlaMa 2 have been fine-tuned using a

combination of RLHF and instruction tuning, the Mistral 7B model meant for chat applications is fine-

tuned using instruction tuning. Both models are used throughout this work.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

8

Scaling

The scaling of the model size is an essential factor in the advanced capabilities of current Large

Language Models (Wei et al. 2022; Zhao et al. 2023b). The work presented by Google DeepMind

(Hoffmann et al. 2022) and previous work by OpenAI (Kaplan et al. 2020) were pivotal in understanding

scaling laws, which are guidelines for optimally balancing the model size, training data, and

computational resources (ibid.; Zhao et al. 2023). The Chinchilla Model introduced by DeepMind in

2022 demonstrated that with more training data, smaller models could outperform larger models

while using less computing power (Hoffmann et al. 2022).

This research has led to two significant trends: developing smaller yet highly efficient models, such as

the 7 and 13 billion parameter-sized LlaMa 2 models (Touvron et al. 2023) or the Mistral 7 B model

(Jiang et al. 2023). These models require less computational power and are more cost-effective than

larger models (Zhao et al. 2023). However, it has motivated the creation of larger models that leverage

increased amounts of data, such as the PaLM (Anil et al. 2023). The accessibility and high performance

of smaller models are particularly beneficial for the open-source and research community (Naveed et

al. 2023). They offer a more practical and economical approach to developing powerful AI tools,

leading to widespread adoption and customization (Zhao et al. 2023). Seven billion parameter sized

models are also the base for the implementation presented in this thesis.

Architectural Improvements

Most modern LLMs display architectural improvements over the first introduced transformer (Naveed

et al. 2023). Key points in research have been the improvement of attention, enlargement of the

model’s context windows, and further enhancement of language understanding. In addition, research

has focused on performance and efficiency (Zhao et al. 2023b).

An example of one of the most modern and improved transformer-based models is the Mistral 7B

model. Mistral AI’s 7B model combines two advanced approaches to attention: Longformer (Beltagy

et al. 2020) and Sparse Transformers (Child et al. 2019) to Sliding Window Attention (Jiang et al. 2023).

This increases efficiency and runtime performance (Jiang et al. 2023). Other common improvements

in architecture include RMSNorm (Zhang and Sennrich 2019), SwiGLU activation functions (Shazeer

2020) and Rotary Embeddings (Su et al. 2021). All of these are proven to improve language

understanding and make Llama2 (Touvron et al. 2023) and Mistral 7B some of the most advanced

models (Jiang et al. 2023; Touvron et al. 2023). This fact informed the implementation decision for

Mistral 7B as the base model of the implementation, as well as the evaluation of LlaMa 2.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

9

Overview of Selected Models

The following table (table 1) briefly gives an overview of selected models and critical characteristics.

It only includes models used in the context of this work and two references: BERT and GPT-4, which

are respectively the first transformer-model and the currently leading LLM. Scoring was not included

in the comparison, as the different classes of models are only partly comparable in scoring because of

their architecture and intended task (Amatriain et al. 2023). All these models are suitable for chat

applications, except (the original) BERT model (Yenduri et al. 2023; Amatriain et al. 2023).

Model Name Created By Release
Year

Availability Architecture Model Size
(Parameters)

Typical Task

BERT Google AI
Language

2018 open source bi-directional 340 million text
classification

GPT-2 OpenAI 2019 open source auto-regressive 1.5 billion text
generation

GODEL Microsoft,
Columbia
University

2022 open source encoder-decoder 770 million generative
question
answering

LlaMa 2 Meta GenAI 2023 open source auto-regressive 7 - 70 billion text
generation

Mistral AI 7B Mistral AI 2023 open source auto-regressive 7 billion text
generation

GPT-4 OpenAI 2023 closed source [unclear] [unclear] text
generation

TABLE 1: OVERVIEW OF DIFFERENT LARGE LANGUAGE MODELS (DEVLIN ET AL. 2018; JIANG ET AL. 2023; OPENAI 2023; TOUVRON ET AL. 2023; RADFORD ET AL.
2019; PENG ET AL. 2022).

2.2 Explainable AI

Explainable AI refers to the movement towards better understandable Artificial Intelligence and the

work contributing to this goal. It is perceived as crucial for building trust in AI systems and overall, the

goal of XAI is to make AI systems more transparent, understandable, and ultimately more trustworthy

(Masís 2022; Molnar 2022). As first defined by Gunning and Aha in the context of the DARPA’s

eXplainable AI program: “[…] [the] goal is to create a suite of new or modified ML techniques that

produce explainable models that, when combined with effective explanation techniques, enable end

users to understand, appropriately trust, and effectively manage the emerging generation of AI

systems.” (Gunning and Aha 2019, p. 45). The fundamental premise of Explainable AI, and specifically

Interpretable Machine Learning, is the creation of frameworks to enhance explainability and allow

humans to understand model output (Bhattacharya 2022; Molnar 2022).

XAI encompasses a variety of different approaches and principles (Gunning and Aha 2019). While this

work focuses on interpretable machine learning, it is vital to understand the overall goals of XAI and

ways to achieve this. Various terminologies have been used to describe the goals of XAI (Miller 2017;

Arrieta et al. 2019). However, across all these different goals, it is essential to understand that the

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

10

receiver of explanations is a human (the audience) (Arrieta et al. 2019; Doshi-Velez and Kim 2017).

Four terms to describe the goals of XAI are:

Explainability: “Explainability is the notion of explanation as an interface in the context of AI.” (Arrieta

et al. 2019). Explainability is given when an AI system can convey the rationale behind its decisions,

actions, or outputs understandably to humans (Arrieta et al. 2019; Kochkach et al. 2023). In XAI,

explainability emphasizes the system's decision-making ability and provides insights into the logic and

reasoning underlying those decisions (Bhattacharya 2022; Masís 2022). Notably, there is a difference

in meaning between explainability and explanation (Molnar 2022), which will be expanded on later.

Transparency: In the context of XAI, transparency refers to the clarity and comprehensibility with

which an AI system reveals its internal mechanisms, algorithms, and data processing (Miller 2017;

Arrieta et al. 2019). This can be achieved through external measures.

Interpretability: Interpretability refers to the extent to which the causes of a model's decisions are

understandable by humans (Kim et al. 2016; Arrieta et al. 2019). It also encompasses the ability of

individuals to consistently predict the outcomes of the model, with higher interpretability facilitating

greater comprehension of the model's decision-making process (Molnar 2022; Miller 2017).

Understandability: Understandability refers to the ease with which a user can comprehend and make

sense of the information and explanations provided by an AI system (Molnar 2022). In the context of

XAI, understandability focuses on ensuring that AI's explanations are user-friendly, considering the

user's technical knowledge, background, and expertise (Arrieta et al. 2019; Doshi-Velez and Kim 2017).

The core concepts of XAI can be applied across the entire stack of AI applications, ranging from model

creation and dataset composition to the display of output and overall accountability (Rothman 2020;

Molnar 2022; Bhattacharya 2022). The goal is to reach a state in which AI systems are transparent to

human users through understandable, interpretable, and explainable outputs (Arrieta et al. 2019).

Additionally, many different approaches, methods, and corresponding technologies can be used to

achieve the goals of explainable AI within an AI project or application (Rothman 2020; Masís 2022).

This study focuses on enabling XAI on a machine-learning level or as close to a model as possible. It

aimed to reach this through what can be described as Interpretable Machine Learning (Molnar 2022;

Masís 2022). The connected approaches and methods will be outlined accordingly.

2.2.1 Taxonomy of Explainable AI

While a survey of all significant research is not the goal of this work, it will prove worthwhile to

establish some basics on taxonomy and categorization based on the most critical work in the field

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

11

(Arrieta et al. 2019; Doshi-Velez and Kim 2017; Molnar 2022). This will inform the following overview

of methods and their comparison and ensure a collective understanding throughout this thesis.

Establishing a clear categorization is especially important because the Taxonomy of Explainable AI has

historically lacked formality, and in literature, specific terms can be used differently (Arrieta et al.

2019; Molnar 2022), possibly further complicating the research on and adaption of XAI

As mentioned, explainable and Interpretable AI are often used interchangeably, and Interpretable AI

usually refers to the same goals and ideas as Explainable AI. Therefore, throughout this thesis,

Interpretable and Explainable AI are used as synonyms. Different from this are the terms

interpretability, interpretability method, and explanation (Molnar 2022; Kochkach et al. 2023). This

approach aligns with the common usage of terms in literature (Molnar 2022; Arrieta et al. 2019;

Holzinger et al. 2022; Miller 2017). Interpretability in machine learning is : “[…]the ability to explain or

to present in understandable terms to a human […]” (Doshi-Velez and Kim 2017). An Interpretability

Method is an approach rooted in machine learning that aims to make a machine-learning model

explainable (Bhattacharya 2022; Masís 2022; Molnar 2022). An explanation is the output of any

interpretability method or transparent model to rationalize a model's output/prediction (Molnar

2022; Miller 2017). An explanation typically connects the values of an instance's features with the

prediction made by its model in a way that is easy for humans to understand. Alternatively, some

explanations comprise a group of data instances (Molnar 2022; Bhattacharya 2022).

Properties of Interpretability Methods

Interpretability methods can display many properties which describe the method's quality (Molnar

2022; Schwalbe and Finzel 2023) or the quality of the generated explanations (Molnar 2022). Both are

important for evaluating interpretability methods. These properties are crucial for understanding and

evaluating the method's effectiveness and suitability for various scenarios (Schwalbe and Finzel 2023).

As a means of simplification, only a subset of commonly used properties outlined in literature (Molnar

2022; Holzinger et al. 2022) are mentioned below and used throughout this work.

Algorithmic Complexity: Algorithmic complexity represents the computational undertaking needed

to generate an explanation with the specific interpretability method (Molnar 2022; Schwalbe and

Finzel 2023). This is intricately connected to the runtime and potentially can scale with the number of

features/tokens and complexity of a model (Holzinger et al. 2022). This is especially true for large

language models that can process substantial data and have a corresponding high model size (Madsen

et al. 2022).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

12

Fidelity: Fidelity refers to how accurate the explanations generated by an interpretability method are

to the actual decision-making process of the model (Molnar 2022). Commonly also referred to as

faithfulness (Schwalbe and Finzel 2023)- It assesses the accuracy of the explanation to the model's

behavior in specific instances (Schwalbe and Finzel 2023). High Fidelity is one of the most essential

properties of an interpretability function, as the explanation closely aligns with the model's actual

functioning (Molnar 2022). In a local instance, the explanation accurately reflects why the model made

a particular decision for a given data point(Schwalbe and Finzel 2023).

Consistency: Consistency ensures that the explanations remain stable across different instances or

versions of the model (Schwalbe and Finzel 2023), as well as across different models trained for the

same task with the same data (Molnar 2022). It implies that similar input instances receive similar

explanations, maintaining uniformity in the interpretability method's output (Schwalbe and Finzel

2023). This consistency is crucial for the reliability and trustworthiness of the explanations provided

by an interpretability method (Molnar 2022).

Stability: Stability, closely related to consistency, refers to the robustness of the explanation against

variations in the input (Molnar 2022). It assesses how much the output of an explanation method

changes with its input, ensuring that explanations are dependable and not overly sensitive to

insignificant changes in the data. Stable explanations are essential for maintaining the validity and

reliability of the interpretability method over different scenarios and data variations.

The properties, combined with the categorization of methods are the most coherent way to determine

a methods quality and fitting to certain model and application settings. Accordingly, they have been

used to determine the most fitting approach to model interpretability.

Categorization of Interpretability Methods

In Explainable AI, there are typically two different ways to reach interpretability in machine learning,

however some sources suggest a more detailed categorization (Schwalbe and Finzel 2023),

showcasing the diverse understanding of the taxonomy of XAI. Similar to the differentiation outlier

earlier, a more straightforward categorization for Taxonomy was chosen, rooted in different

surveys(Arrieta et al. 2019; Holzinger et al. 2022).

Intrinsic Interpretability or Transparent Models: Interpretability is intrinsic to the model, when the

model is interpretable by design (Molnar 2022) or self-explainable (Schwalbe and Finzel 2023).

Transparent Models are also named white-box or glass-box models (Linardatos et al. 2020). A model

with intrinsic interpretability however might not be understandable and still call for an interpretability

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

13

approach to reach the goals of XAI (Molnar 2022). Making a model transparent through adapting the

architecture can also be an approach to interpretability but is usually considered a post hoc approach

(explained below) (Schwalbe and Finzel 2023).

Post Hoc Interpretability: Opposite to transparent models, non-transparent models are called black

box models (Arrieta et al. 2019; Molnar 2022). The existence of black box models calls for methods to

explain predictions of an AI after they have already been made. These are Post Hoc Interpretability

methods (Arrieta et al. 2019; Holzinger et al. 2022; Madsen et al. 2022). Post Hoc Interpretability

methods are meant to explain a model prediction decision after the fact, considering the input and

output of a model, and aim to clarify the model's decision-making process by generating explanations

for individual predictions or highlighting the model's overall behavior (Molnar 2022). Generated

explanations can have various forms and showcase multiple properties (Schwalbe and Finzel 2023).

Black box models include transformer models, which are per definition not transparent because of

their inherent nature as deep learning models (Zini and Awad 2023). As this work focuses on the

interpretability of transformer architecture-based models, the focus will be on Post Hoc

Interpretability going further. Therefore, they are exclusively referenced in the following and

references to in short as interpretability method or interpretability approach henceforth.

Various approaches exist to further categorize Post Hoc Interpretability Methods. Fundamentally, a

method for Post Hoc Interpretability is defined by at least three characteristics (Arrieta et al. 2019;

Molnar 2022; Holzinger et al. 2022):

1. Model Specific or Model Agnostic (Portability): This characteristic determines whether an

explanation method is tailored to a specific model, or models with the same architectural

elements, or is versatile enough to be applied to various models (Molnar 2022; Schwalbe and

Finzel 2023). Model-specific methods are designed to collaborate with a particular model

type, unlocking detailed insights specific to that model's structure (Molnar 2022). In contrast,

model-agnostic methods offer broader applicability, allowing for explanations across different

model types and architectures, and enhancing their utility in diverse applications (Arrieta et

al. 2019)

2. Local or Global Explanation (Locality): This classification addresses the scope of the

explanation that is provided by an interpretability method (Arrieta et al. 2019; Molnar 2022).

Local explanations focus on individual predictions, shedding light on why a model made a

specific decision for a single instance. This is useful for understanding case-specific model

behavior (Holzinger et al. 2022). Global explanations, on the other hand, provide insights into

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

14

the overall decision-making process of the model, offering a comprehensive view of how the

model operates across all instances (Molnar 2022).

3. Explanation Outcome (Expressive Form): This category refers to the format in which the

explanation method presents its findings (Molnar 2022). The output form of an explanation

varies widely, ranging from numerical values like attribution values, rules and heatmaps to

example-based explanations. The nature of the output determines how accessible and

understandable the explanation is for different audiences, playing a critical role in the practical

usability of the explanation method in real-world scenarios (Schwalbe and Finzel 2023).

Considering the outlined categorization, Interpretability Methods can be classified as follows (figure

2). In this graphic, the post hoc interpretability approaches would be listed below their specific

expressive form.

Furthermore, there are two primary approaches to model interpretability: gradient-based methods

and perturbation-based methods. The former is based on altering input features and assessing the

network's performance on each possible (random) combination of input features - perturbations,

which can be computationally intensive and requires multiple passes through the model. In contrast,

gradient based approaches use backpropagation to calculate gradients and estimate attribution scores

(Ancona et al. 2019). Based on this fact, gradient-based approaches are model specific to neural

network-based models, like transformer models.

2.2.2 Overview of Interpretability Methods

In the following, we will look at different techniques for model interpretability, specifically Post Hoc

Interpretability methods fit for transformer models, which limits the model specific methods available.

Still the overview is not intended to be complete, as the number of different methods and further

improvements is enormous (Kochkach et al. 2023; Arrieta et al. 2019). The overview will include

FIGURE 2: GRAPHIC SHOWCASING TAXONOMY OF XAI APPROACHES.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

15

different model-specific and model-agnostic methods. Every presented method can be applied to

transformer models.

Method Name Portability Locality Expression

Form

Key Properties Description

LIME Agnostic Local Attribution

Values

Local Fidelity Interpretability through the local

fitting of surrogate models

Shapley Value

(Sampling)

Agnostic Local Attribution

Values

Fidelity and

Consistency

Game-theory based attribution

method through perturbation.

KernelSHAP Agnostic Local Attribution

Values

Local Fidelity

and Efficiency

Combination of LIME and Shapley

Values to estimate SHAP Values.

PartitionSHAP Agnostic Local Attribution

Values

High Efficiency Runtime efficient variant of SHAP

based on Owen Values.

Attention

Visualization

Specific Local/Global Visualization [unclear] Visualization of underlying attention

of the model to different tokens.

Attention

Attribution

Specific Local/Global Attribution

Values

[unclear] Attribution of attention based on

attention heads and dependencies.

GradientSHAP Specific Local Attribution

Values

Fidelity SHAP variant based on integrated

gradients.

TABLE 2: OVERVIEW OF DIFFERENT INTERPRETABILITY APPROACHES (MOLNAR 2022; HOLZINGER ET AL. 2022; LINARDATOS ET AL. 2020).

This table (table 2) gives a brief overview of the following interpretability approaches and their

characteristics. The table additionally includes a concise description of the model interpretability

approach, their properties, and how explanations are created. More in-depth explanations will follow.

Model Agnostic Methods

The concept of making interpretability and explanations independent from a model was first

introduced in 2009 (Baehrens et al. 2009). While model-agnostic approaches are the most flexible,

they can also lack performance compared to model-specific approaches (Molnar 2022). They are

typically more widespread in adoption because of their versatility and ease of application across

diverse types of models (Molnar 2022; Holzinger et al. 2022).

Some of the more common Model Agnostic Interpretability Approaches are LIME (Ribeiro et al.

2016a), the SHAP framework (Lundberg and Lee 2017) and Shapley Values, estimated through i.e.

Sampling (Erik Štrumbelj and I. Kononenko 2010) .

LIME (Local Interpretable Model-agnostic Explanations) is an approach that explains local decisions

with a surrogate model (Holzinger et al. 2022, p. 16) The overall goal of LIME is to use an interpretable

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

16

model to generate explanations. This model is trained on perturbations of input and output of the to-

be-explained model (Ribeiro et al. 2016a). This is achieved through local fitting of an interpretable

surrogate model (i.e., a linear regression model), which is how explanations are locally generated for

each feature (Ribeiro et al. 2016b). LIME is a local perturbation-based approach that provides

explanations for each model decision and no global explanations (Holzinger et al. 2022). Furthermore,

LIME can be used for Text, Tabular, and Image data (Molnar 2022). LIME local fidelity is remarkably

high. However, it is highly dependent on the fitting of the surrogate model, which can require more

effort and data than other approaches (Holzinger et al. 2022). LIME explanations can be unstable,

especially if LIME is not optimized (Molnar 2022).

Game Theoretic Approaches use game theory as a theoretical approach to understanding social

interactions with competing actors. It studies optimal decision-making by independent and competing

agents in a strategic setting. Cooperative game theory, a branch of game theory, emphasizes that

coalitions of players are the primary decision-making units that can enforce cooperative behavior.

Shapley values, named in honor of Lloyd Shapley, who introduced them in 1951, are a solution concept

in cooperative game theory. In this context, the Shapley value acts as a formula to measure each

player's contribution to the overall game. It addresses the challenge of fairly distributing the "payout"

among players (or features in machine learning), considering their varying contribution levels and

influence. The Shapley value is calculated based on the marginal contribution of a variable or feature

across all subsets of features, aiming to distribute the total gains among the players.

This theory can be utilized for model interpretability; in this context, Shapley Values are used to

determine the relative impact of each feature or variable on the output of a model by comparing their

effects against the average across all different outcomes. Each model feature acts like a player, and

Shapley Values are used to calculate these features' impact on the model output. These are the

generated explanations. There is a large number of game theory-based approaches (including SHAP)

that are all based on some form of Shapley Values (Linardatos et al. 2020).

The main advantages of Shapley's values are the fair distribution between features, fidelity,

contrastive explanations, and the solid theory behind the approach (Molnar 2022). The disadvantages

of Shapley Values are most notably the algorithmic complexity and their complex interpretation

(Holzinger et al. 2022). One common criticism of Shapley Values and all methods based on

perturbation is the random combination of features. As different perturbations are created and

examined, unrealistic and potentially wrong feature combinations can appear. This is based on the

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

17

theory that each player (or feature) is independent. However, this is commonly not the case, especially

in the field of NLP. This leads to sampling and evaluation of entirely wrong feature combinations.

Shapley Values are extremely exhaustive since the number of calculations exponentially increases for

each additional model feature. As expressed mathematically, this is 2Ϝ, with Ϝ being the amount of

model features, which in a LLM setting are the input tokens. Considering this, it is typically only feasible

to estimate this value, as accurately calculating them is too computationally intense. One approach to

estimation is Shapley Value Sampling, which samples permutations of the input features to determine

the values (Erik Štrumbelj and I. Kononenko 2010).

An evolution of Shapley Values is Owen Values. This concept extends Shapley Values by accounting

for the presence of a coalition structure. This structure divides the players into distinct groups or

coalitions, and the Owen value determines the value or payoff for each player, considering their

contribution and membership in specific coalitions. This makes the Owen Values particularly

applicable to scenarios where players (or model features) are naturally grouped or have existing

partnerships or alliances. Owen values are then exclusively calculated based on these grouped

features instead of all individual features, which significantly limits the number of needed calculations

as they do not increase exponentially.

The SHAP Framework (SHapley Additive exPlanations) was introduced in 2017 by Lundberg and Lee

(Lundberg and Lee 2017). The framework presents a form of attribution values (SHAP values) and new

associated methods to calculate these. These methods are model agnostic and model specific

approaches, which each combines the benefits of Shapley Values with the benefits of each underlying

interpretability method (Lundberg and Lee 2017; Edoardo Mosca et al. 2022). For this, the framework

relies on the work of essential approaches, namely LIME, DeepLIFT, and LayerWise Relevance

Propagation (LRP) (Linardatos et al. 2020).

SHAP values allow the attribution of each feature’s importance based on the expected output of the

original model (the base values) (Lundberg and Lee 2017). SHAP values have several advantages over

the feature significance measurements of other methods (Molnar 2023). They have local accuracy,

missingness, and consistency (Linardatos et al. 2020).

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

18

Through SHAP values the authors suggested to unify different interpretability approaches into one

consolidated metric for assessing feature significance, which the named methods all aim to estimate

(Lundberg and Lee 2017). The authors also suggested several ways to highlight the SHAP values

graphically; an example from the original paper can be seen below (figure 3).

Lundberg and Lee introduced new methods to approximate SHAP values based on existing

Interpretability Methods. Generally speaking SHAP methods all have similar advantages, which are

the same as the advantages of Shapley Values (Holzinger et al. 2022). Additionally, they display a more

efficient estimation through different methods and inherit some benefits of the approach they are

adopted from (Edoardo Mosca et al. 2022; Lundberg and Lee 2017). Across all these methods, the

SHAP Values are also comparable (Molnar 2023). KernelSHAP and PartitionSHAP will be explained

thoroughly in the following as they were used throughout the implementation part of this thesis.

A core principle common to most SHAP interpretability approaches is masking, a method used to

simulate all the different possible outcomes or subsets of features and used in KernelSHAP and

PartitionSHAP. All different subsets (perturbations) of features are simulated by masking different

input features. With text input, this is commonly done by replacing the value with an empty string.

For each subset, attribution values can be calculated using different interpretability methods. The

individual impact of each feature on the output can be calculated by comparing these values to a base

value across all different feature variations. The masking approach was further formalized by Scott

Lundberg and Su-In Lee, together with Ian C. Cover, in their paper “Explaining by Removing: A Unified

Framework for Model Explanation” (Covert et al. 2020).

KernelSHAP is a model agnostic interpretability approach that combines Shapley Values and LIME

(Molnar 2022). It uses improved principles of LIME to estimate SHAP values. Different model features

are masked based on an initially calculated attribution, and model predictions are generated for each

created perturbation of features (input tokens). A single perturbation is sometimes called a coalition

and is a combination of different model features out of which one or more can be masked out to focus

on the non-masked-out feature. For masking, KernelSHAP replaces a feature value with a randomly

sampled value from the training dataset. In, i.e., an NLP setting, this can also be an empty string value.

Based on predictions for different perturbations, a group of weights is calculated using the SHAP

FIGURE 3: VISUAL DEPICTION OF SHAP VALUES (LUNDBERG AND LEE 2017)

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

19

Kernel. This SHAP Kernel is a formula used to weigh different coalitions according to their importance,

and, in combination with LIME, it can generate Shapley Values. This LIME is fitted with a weighted

Linear Regression based on the calculations done through the SHAP Kernel. LIME then generates the

feature importance values, SHAP Values, for all input tokens.

PartitionSHAP is a newly introduced SHAP variant based on Owen Values. For this, PartitionSHAP

clusters input features. While this could be done based on, i.e., grammatical structure, it is usually

done based on a similar pattern. For these unions and perturbations, PartitionSHAP calculates Shapley

Values, utilizing masking throughout to create different feature subsets. The given PartitionSHAP

implementation replaces string tokens with an empty string or the following: “….” Different masking

strategies are employed for other models and data types, as specific models cannot manage missing

features. Because of the Owen values approach to game theory, it is computationally less intensive to

calculate SHAP Values. This makes PartitionSHAP highly runtime efficient and a fast model agnostic

approach. However, Owen's values are more granular, and PartitionSHAP explanations can tend to be

less accurate than methods like KernelSHAP. Otherwise, it still has the benefits of SHAP Values and is

a valuable addition to model agnostic interpretability approaches.

Model Specific Methods

Model-specific interpretability methods are designed to uncover the internal mechanics of a model,

offering explanations for its outputs in a way closely tied to the model's architecture. They typically

leverage machine learning models’ specific concepts and internal workings. In the realm of

transformer model interpretability, various methods are employed.

Attention Visualization is a method where the attention values between tokens in self-attention

layers are considered a relevancy score. For this, it utilizes the potential inherent interpretability of

transformer models by outputting value representation of the transformer models attention to

specific tokens (Yeh et al. 2023; Vig 2019). Specifically, these are the self-attention values created by

a transformer model, representing the relationship between different words (Vaswani et al. 2017).

The attention values allow a transformer to make informed predictions based on input tokens and

(potentially) previously decoded tokens (Amatriain et al. 2023; Vaswani et al. 2017). Attention

visualization can be done on encoder, decoder and cross (encoder-decoder) attention, depending on

transformer model specifics (Vig 2019). However, presenting model features is not necessarily

understandable to the audience. To reach interpretability, further processing and visualization are

needed (Molnar 2022). Attention visualization can deliver straightforward, achievable explanations

that have an accessible expression. However, they lack actual insights, as there is no actual connection

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

20

possible between input and output values, especially with auto-regressive generative models (Zhao et

al. 2023a). Furthermore, a model's attention values do not accurately represent a token's importance

to a model output (Hao et al. 2020; Zhao et al. 2023a). Therefore, attention visualization is often

critiqued for its simplicity and potential to highlight irrelevant tokens. It tends to focus solely on

attention scores and ignores other computational aspects of the network (Hao et al. 2020).

Subsequently, other connected approaches have been introduced, such as attention attribution,

which seeks to use attention values as the base of attribution. It does so through refining the selection

of attention values, based on different attention heads and extracting dependencies.

The two most common attention visualization implementations are BERTViz (Vig 2019) and the more

recent AttentionViz (Yeh et al. 2023). These build on previous research on attention visualization, most

importantly Tensor2Tensor visualization (Vig 2019).BERTViz7 introduced improvements to previous

work, notably adopting decoder-only and encoder-decoder Models (Vig 2019).

2.2.3 Evaluating Interpretability Methods

Interpretability methods can be evaluated through several measures, one of which is through the

properties of Interpretability Methods and the generated explanations (Molnar 2022; Schwalbe and

Finzel 2023). The properties combine qualitative and quantitative measures, as well as some

properties that are not necessarily suitable for evaluation, like expressive form. Selected properties

have been outlined in Properties of Interpretability Methods, but many others exist (Schwalbe and

Finzel 2023). These properties can accurately describe the quality of an Interpretability Method and

generated explanations, and there is existing work on evaluating different approaches on fidelity,

consistency, or other properties. Nonetheless, evaluating the properties and objective helpfulness of

an interpretability method can prove challenging. Some recent contributions have introduced ways to

evaluate explanations with reference datasets. These contributions (Hedström et al. 2023; Arras et al.

2022), as of December 2023, have so far focused on Visual Models or, in some cases (Hedström et al.

2023), not progressed to NLP tasks.

However, evaluation of Interpretability methods through properties or with testing datasets does not

necessarily cover how valuable explanations are for a human user, which can be considered the

primary audience of explanations and XAI (Arrieta et al. 2019). To evaluate methods considering the

needs of this audience, a measure of accuracy of consistency across different cases is typically not

enough, as high fidelity or strong consistency do not necessarily reflect on the value to the explanation

audience. Doshi-Velez and Kim have suggested a framework that allows for the evaluation of

7 SEE HTTPS://GITHUB.COM/JESSEVIG/BERTVIZ

https://github.com/jessevig/bertviz

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

21

interpretability method implementations based on numerous factors and their target audience. It

thoroughly outlines evaluation steps for any implementation. This framework was used as the

underlying framework to evaluate the quality of the created prototype in this work. The framework

fundamentals consist of three evaluation steps: application-, human-, and functionally- grounded

evaluation of interpretability methods. In this context, application-grounded evaluation is the

evaluation in the context of the real-world application. This means, i.e., that an experiment is run with

the exact intended usage, and real-world users of a system evaluate the result (Doshi-Velez and Kim

2017). The human-grounded evaluation covers a simplification of the application-grounded

evaluation. The evaluation is done by simply grading an explanation performed outside of the usual

application context (Doshi-Velez and Kim 2017). Functional evaluation is done through evaluation by

proxy; by comparing an explanation to another one and excluding any human rating (Doshi-Velez and

Kim 2017). While the first two steps evaluate subjective helpfulness for different audiences, the last

evaluation step is on a more technical level and focuses on properties of the used interpretability

method.

2.3 Chatbots

The chosen sample use case to further evaluate interpretability options for LLMs is that of a chatbot

application. The most prominent example of a chatbot application is ChatGPT, which was released in

November 2022 (Loukides 2023; Hariri 2023). A chatbot is a computer program designed to simulate

conversation with human users, especially over the internet. It operates through a combination of

pre-set scripts and various forms of AI, utilizing technologies such as natural language processing (NLP)

and machine learning (ML) to process and understand human language (Adamopoulou and

Moussiades 2020). Since, 2022, chatbots have developed to incorporate AI and have become reliant

on large language models (Loukides 2023; Hariri 2023)

Chatbot applications display a few key characteristics. Firstly, they are designed to understand and

respond to natural language inputs, allowing for more intuitive user interaction (Galitsky 2019;

Adamopoulou and Moussiades 2020). These applications also prioritize user engagement, often

employing conversational tactics to maintain a natural and fluid dialogue (Jain et al. 2018). Connected

to these three main user expectations can be defined as the core expectations set towards chatbot

applications:

User Experience/Interface: The design of the chatbot user interface (UI) is pivotal in shaping the user

experience. Interfaces that are intuitive and straightforward are preferred, facilitating interactions

that are uncomplicated and demand minimal learning or effort from users

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

22

 (Jain et al. 2018; Galitsky 2019) . The aim is to develop user-friendly platforms that enable effortless

navigation and interaction, thereby making chatbots accessible to a wide spectrum of users with

varied levels of technical proficiency (Jain et al. 2018).

Language Understanding: A fundamental expectation for modern chatbots is the capability to process

and understand natural language (Abdulla et al. 2022). This necessitates the integration of advanced

Natural Language Processing technologies like Large Language Models, which empower chatbots to

interpret and respond to the colloquial and diverse language utilized by different users (Abdulla et al.

2022; Hariri 2023).

Personalization: Personalization in chatbot interactions is important to users and a key premises of

commonly available tools (Hariri 2023). Customized chatbots that recall previous interactions and

accordingly customize responses provide a more individualized experience (Abdulla et al. 2022)

3 Current State of Research

An ample number of theories, surveys on taxonomy and modern approaches to machine learning

interpretability exist (Arrieta et al. 2019; Holzinger et al. 2022; Molnar 2022). This includes work

applicable and specific to transformer models, as outlined throughout the fundamentals part of this

work. A good amount of groundbreaking work can be found around the theories and methods of XAI

(Lundberg and Lee 2017; Ribeiro et al. 2016b), as well as applications thereof (Palacio et al. 2021;

Madsen et al. 2022; Masís 2022). Nonetheless, a notable gap can be observed when researching the

adoption onto Large Language Models within the established definition, or when looking into

implementation with chat applications. A similar gap, however smaller, exists in XAI research utilizing

generative text models. Several interpretability approaches, both model specific and model agnostic,

are applicable to transformer models and generative text models. Nevertheless, most work or

demonstrations of new interpretability approaches are utilizing models like BERT or GPT-2. These

cannot or barely be considered Large Language Models, because of their model size and lack of

emergent capabilities (Zhao et al. 2023b). BERT is a commonly used and utilized language model for

research purposes within other XAI methods and implementations of SHAP (Mosca et al. 2022). This

is probably mainly because of its wide adoption and low computational requirements. Other work

references GPT-2 as showcase for text generation models (Molnar 2023). However, modern

generative models are not commonly used in these circumstances. A commonly used NLP task to

display XAI methods is hate speech detection or other classification tasks like sentiment detection

(Remmer 2022; Mosca et al. 2022). However, implementations of model interpretability on text

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

23

generations are typically hard to find, and limited significant research exists. This is also the case

because of the relative novelty of widely and openly available LLMs like LlaMa, LlaMa 2, Mistral AI,

OpenChat, etc. (Zhao et al. 2023b).

An outlier to this lack of research is recent work from the team behind captum. Captum is an open-

source library for model interpretability, build for Pytorch based models and part of Meta Open Source

(Kokhlikyan et al. 2020). A recent paper introduces novel features for LLM interpretability and

showcases application into a model like LlaMa 2 (Miglani et al. 2023). This work is referenced in the

presented implementation.

Overall, a clear research gap in the field of XAI focusing on the application of interpretability of

generative text models is evident. This is especially the case for comparing how well different

approaches fit LLMs and if existing approaches can fulfill the expectations for Explainable AI in a

production setting. Specifically, a usable chatbot application prototype, which is the topic of this

thesis.

4 Implementation

The implementation is split into two main parts that build on each other. First is the exploration and

evaluation of different interpretability approaches on Large Language Models (LLM Interpretability).

Building on this is the conception, design, and implementation of an application prototype

(Application Prototype). The first is fundamental to the second as it thoroughly explores several

concepts and implementations and lays the groundwork for the application prototype. The

exploration and evaluation produced conclusive qualitative and quantitative insights on applicability

of different methods that were used for implementation and individually analyzed. The prototype

created based on these insights was evaluated using a specifically created evaluation framework and

individual qualitative assessment. The results of this evaluation provide further insights into the

possibilities of interpretability for LLMs and withing chatbot applications.

In the following, an overview over specific used technologies, technological approaches and methods

will be given. This includes the used evaluation framework. Furthermore, notable implementation

details of both implementation steps will be outlined separately.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

24

4.1 Used Technologies and Methods

A customary technology and tool stack was used for implementation. This included Python, Pytorch,

the Huggingface Platform,8 and Google Colab9. All of these are standard technologies/tools for their

respective tasks. They are commonly included in literature covering the application of LLMs for both

scientific and industry usage (Jha 2023; Masís 2022; Rothman 2020; Rothman and Gulli 2022; Tunstall

et al. 2022). Other common standards include using Docker, GitHub, and PyCharm as IDEA for

programming. A focus was put on utilizing open-source technologies, for reasons outlined earlier.

Furthermore, using open-source software allows for easy access and, if needed, customization of

software without having to develop an entirely new system.

4.1.1 Notable Used Technologies

Additionally, this work is based on four open-source libraries for python that are less commonly used

within machine learning and a UI toolkit for machine learning applications. Most importantly these

are the used libraries for interpretability implementation: shap10, captum11 and inseq12. shap and

captum are the two most widely used open-source libraries for interpretable machine learning.

Furthermore, this work explored the insights provided by attention visualizing using another library,

BERTViz. Moreover, the prototype is based on Gradio13 for user interface functions. All these used

technologies and tools will be shortly described in the following.

shap

The shap package originates from the foundational work and code of Lundberg and Lee, which was

introduced alongside the SHAP framework (Lundberg and Lee 2017). Over time, it has been enhanced

by contributions from various developers in the open-source community and follow-up work by Scott

Lundberg. As of December 2023, the package supports eleven methodologies for computing SHAP-

based explanations. It offers user-friendly classes tailored for diverse interpretability methods, which

facilitate the generation of explanations and the visualization of feature attribution. It implements

model specific methods like DeepSHAP and GradientSHAP, as well as model agnostic methods like

KernelSHAP and PartitionSHAP. Depending on the method, it supports input in textual, tabular, and

visual form. The package includes various visualization capabilities to create interactive graphics in

8 SEE HTTPS://HUGGINGFACE.CO/
9 SEE HTTPS://COLAB.GOOGLE/
10 SEE HTTPS://SHAP.READTHEDOCS.IO/EN/LATEST/
11 SEE HTTPS://CAPTUM.AI
12 SEE HTTPS://INSEQ.ORG/
13 SEE HTTPS://WWW.GRADIO.APP/

https://huggingface.co/
https://colab.google/
https://shap.readthedocs.io/en/latest/
https://captum.ai/
https://inseq.org/
https://www.gradio.app/

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

25

html and JavaScript as well as graphics. These features have mostly been contributed by developers

such as Scott Lundberg, as is the case with most of the package features.

SHAP is one of the more complete interpretability frameworks available, especially because of the

array of plotting and visualization tools available. However, the shap package has not seen significant

advancements in recent years, with the latest updates primarily focusing on bug fixes. No substantial

updates have been implemented to adapt the package to the rapidly evolving landscape of Large

Language Models since the acceleration in their development. Nonetheless, shap does support a

limited amount of auto regressive models like GPT-2, which are wrapped in special classes to gain

access to prediction probabilities. The shap package was used in exploration of different methods,

evaluation of LLM Interpretability and as a supplementary implementation of model interpretability

in the application prototype. The prototype also uses the advanced visualization provided by shap.

captum and inseq

The captum library is a library by Meta Open Source, specifically the same team working on PyTorch

(Kokhlikyan et al. 2020). Within this ecosystem, Captum offers a suite of interpretability methods that

are integrated with PyTorch. Based on the possibilities of PyTorch models, captum also supports

diverse input types like text and visual or tabular data. However, the library is dependent on PyTorch

and therefore only supports neural network models. The library supports sixteen post hoc

interpretability methods and, most significantly, a framework for LLM interpretability that was

released in December 2023 (Miglani et al. 2023). Examples of available interpretability methods

include LIME, KernelSHAP, GradientSHAP and Shapley Value Sampling. The newly introduced LLM

Attribution classes simplify the incorporation of various interpretability techniques into

autoregressive text generation models, such as Llama 2 (Miglani et al. 2023), which is achieved

through directly accessing model functions and effective masking of input features, like the shap

package. Captum additionally offers a limited visualization capability. Captum was extensively used

for exploration and evaluation alongside the shap package. Furthermore, it provides the main

interpretability method implementation in the application prototype.

Inseq is another initiative that aims to provide access to multiple interpretability methods, with a

specific focus on sequence-to-sequence models (Sarti et al. 2023). It relies heavily on captum and

augments it with additional visualizations, as well as support for certain models. Based on this it was

evaluated for the usage with GODEL.

Overall, captum provides an extensive set of available interpretability approaches, profiting from a

tight integration with PyTorch and backing of the respective team. For PyTorch based neural network

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

26

models it can be considered the prime solution to post hoc interpretability. This is exemplified by the

newer approach to interpretability for Large Language Models, which to date is unique in the field.

Inseq provides various capabilities specific to sequence-to-sequence models that would not be

available otherwise and supports these with improved visualization based on captum. However, its

limitations with auto-regressive models mean it is not fit for most other models.

BERTViz

BERTViz, first introduced in 2017, is an open-source library providing graphical visualizations of

transformer model attention in HTML and JavaScript (Vig 2019). It uses model functions to output

attention values together with the model output and visualizes these. Three different views of model

attention can be created, depending on the used model. Since the introduction of GPT-2 in 2019 there

has been no significant improvement of BERTViz and overall, the value as interpretability method is

severely limited, since attention values do not accurately represent the importance of tokens to the

model output. It was therefore not used as part of the implementation or evaluated further.

Gradio

Gradio combines Python and JavaScript packages to a complete library focused on the creation of user

interfaces for machine learning applications (Abid et al. 2019). It enables building UI in pure python,

out of which it compiles HTML, JavaScript and CSS and other underlying technologies for routing, etc.

For this, Gradio predefines various components and other functionalities tailored towards machine

learning applications and additionally enables the creation of custom components (Abid et al. 2019).

Gradio's design allows for minimal transitions between programming languages and effortless

integration with hosting services such as Hugging Face Spaces. It is one of the more widely used UI

libraries along with i.e., Streamlit for Python or Shiny for R.

4.1.2 Code Quality

Black14 and Pylint15 were utilized as code quality tools to ensure high code quality across Python code

in the application prototype modules and Jupyter Notebooks. black is a code formatter for Python that

utilizes an opinionated code style based on the PEP 8 Python style guide. black detects and

automatically fixes typical errors and inconsistencies in code formatting. Pylint is a static code analyzer

focused on errors, code smells, and possibilities for refactoring. Both tools were run in a CI/CD scheme

using the pre-commit16 package and GitHub Actions. Combining black and Pylint ensures code quality

based on standard Python style guides like PEP8. Several minor rule changes, and ignored issues were

14 SEE HTTPS://BLACK.READTHEDOCS.IO/
15 SEE HTTPS://PYLINT.READTHEDOCS.IO/
16 SEE HTTPS://PRE-COMMIT.COM/

https://black.readthedocs.io/
https://pylint.readthedocs.io/
https://pre-commit.com/

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

27

additionally configured. However, these custom rules are conservative, and a high code quality is

maintained at an elevated level.

4.1.3 Evaluation Framework

The evaluation framework used to investigate the quality of the implementation is loosely oriented

on the framework proposed by (Doshi-Velez and Kim 2017), as outlined and described in Evaluating

Interpretability Methods. In this work, two evaluation steps have been covered: application-grounded

and human-grounded evaluation. Additionally, a comparative analysis was performed using the (also

implemented) visualization approach. This allowed for isolated evaluation of the quality of

explanations and the head-to-head comparison to a different method. Attention Visualization can be

considered a baseline of interpretability for transformer models as it is the simplest, most easily

usable, out-of-the-box approach. The limited value of generated explanations is recognized in the

comparative analysis through the scoring method. This way, a rich set of evaluation results covering

several factors of good XAI could be compiled, and the method was evaluated for fidelity, consistency,

and stability. Furthermore, the helpfulness of explanations to different audiences was measured. This

way, the evaluation adheres to all the critical premises of XAI. A scientifically sound approach was

ensured by relying on fundamental work on the topic (Doshi-Velez and Kim 2017), referenced by some

practical sources in the field (Molnar 2022). These three tiers of evaluation will be outlined shortly.

While functionally grounded evaluation should be considered an important set of evaluation and in

certain cases might be the only viable evaluation method (Doshi-Velez and Kim 2017), it was not used

as evaluation step in this work. The reason for this is the focus on the helpfulness to the audience and

the thoroughness of the previous evaluation before building the application prototype. The latter

already represents thorough testing of the interpretability method implementation, as the specifics

are similar in evaluation and the final prototype.

For evaluation of the prototype, a total of ten test inputs were used with the main model and SHAP

based interpretability approach. The ten test inputs vary in topic, message, and system prompt to

account for variety in inputs. For comparability, two inputs always cover the same topics, although

with different messages or system prompts.

Application-Grounded Evaluation

This evaluation tier was fulfilled through rating of the explanations by the application creator. In this

scenario, he fulfills the application or model creator role. This persona's stated goal is to further

understand or enhance application and model. Each prompt and the resulting explanation were rated

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

28

for helpfulness towards reaching this goal on a scale from 1 to 5. This evaluation resulted in an

application-grounded helpfulness score. A higher score on this scale is better.

Human-Grounded Evaluation

Human-grounded evaluation was performed similarly to application-grounded evaluation but with a

different audience in mind. The rating was done from the perspective of a human without any prior

knowledge of the model or specific knowledge of the field of NLP and machine learning. Essentially,

the rating was still performed by the author but by thinking of the position of the described persona.

The goal of this persona was to gain a better understanding of the model’s reasoning. For this,

explanations should show a clear connection between input and output and can be easily understood.

Using this approach, the implementation could be evaluated from an end-user perspective without

leveraging extensive user interview, which was deemed out of scope for this work. The human-

grounded evaluation step resulted in the human-grounded helpfulness score. As with the application

grounded evaluation, this is represented on a scale of 1 to 5. Respectively, a higher score is better.

Comparative Analysis

The application-grounded and human-grounded evaluations were also performed on the

implemented attention visualization to inform a comparative analysis. Evaluations were done in the

ways described for application- and human-grounded evaluations. The delta between the application-

grounded and human-grounded evaluations was calculated to formalize the comparison between

methods. The delta was calculated by subtracting the rating for attention visualization from the rating

of the main interpretability method. The reason for this is that it is to be expected and desired that

the SHAP implementation performs better. Therefore, a positive delta is anticipated. A higher delta

value is better.

4.2 LLM Interpretability

In preparation for the conception, design, and development of the application prototype, research to

evaluate various approaches to post hoc interpretability was conducted. This involved exploring

several different implementations, using the previously described libraries for model interpretability

as a starting point. Furthermore, selected approaches and models were evaluated together on quality

and performance using a standardized approach. The insights gathered from the exploration of

different methods were combined with the evaluation. These generated results are the basis for

implementation decision for the prototype, but the results also represent significant insights into the

interpretability of Large Language Models.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

29

4.2.1 Exploration

The application of various interpretability methods, libraries, and models was investigated thoroughly

through practical testing. The methods explored included LIME, KernelSHAP, PartitionSHAP,

PermutationSHAP, GradientSHAP, Integrated Gradients, Shapley Value Sampling, and various forms of

attention visualization. The objective was to determine the efficacy of the approaches with Large

Language Models like GPT-2, Mistral, and Llama 2. The explored implementations are the basis for a

formalized comparison of different methods on various Large Language Models.

Through exploration of PartitionSHAP with Mistral and Llama 2 it was determined that the

PartitionSHAP implementation from the shap library was not functional because of an issue in

calculating log odds, which is the probability to predict each given token and is needed when

calculating SHAP values for the different perturbations of the model input. This issue could not be

fixed because of the theoretical and technical complexity of PartitionSHAP. Nevertheless, it was

possible to implement three other methods with these larger models. These are LIME, KernelSHAP

and Shapley Value Sampling.

4.2.2 Evaluation

Evaluations were conducted on three distinct models: GPT-2, Mistral 7B, and LlaMa 2 7B. Specifically,

these are the openly available version of GPT-2, Mistral 7B Instruct v0.2, LlaMa 2 7B Chat HF (HF =

Huggingface version). Additionally, some tests were run with GODEL v1.1 Large. These models

operated under identical settings and received the same input. Four interpretability methods—LIME,

KernelSHAP, Shapley Value Sampling, and PartitionSHAP—were assessed, focusing on their

explanation quality and runtime efficiency. However, PartitionSHAP was only applied to GPT-2, as its

implementation with the other models was not feasible. The tests were performed on all three models

after each other. This was possible though using the maximal available hardware acceleration option

from google colab and a common approach to reduce memory footprint without losing performance

that is provided by the transformer’s library, 8-bit Matrix Multiplication (Dettmers et al. 2022). The

used virtual machine had 80GB of RAM and 40GB of GPU memory available on a Nvidia A100 GPU.

This significantly shortened runtime to an average of 1/10 of utilizing only a CPU. Another full testing

run was done using only a CPU and in a sequential way as the hardware setup was only able to manage

one model at a time. The runs were aborted after a maximum of 4 hours, after which the Shapley

Value Estimation with Mistral and LlaMa models was not finished. The data presented in the results

reflects on the generated explanations and the performance of different methods depending on the

utilized hardware acceleration.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

30

The evaluation algorithm instantiated interpretability classes for the requested models and model-

method combination, from which it generated explanations for the model inputs. For GPT-2 this was

a simple message. For Mistral 7B and LlaMa 2 7B the input was formatted according to prompt

conventions and including a standardized system prompt, as the used models were finetuned for chat.

Across all explanation runs the runtime was measured. A standardized plotting function was used to

display the individual explanations, ensuring compatibility across different methods. Explanations

were displayed in sequence and token to token level, depending on the used implementation.

Sequence wise explanations show the attribution of only the input tokens. Token to token

explanations show attribution values of each input token relative to each output token in a heatmap.

Style wise the created graphs were oriented on the coloring defined by SHAP, to further standardize

the output. This means that positive attributions are magenta and negative attribution sky blue. A

total number of 4-6 graphs with explanations were created for each model run as well as a table of

runtimes for each different approach.

Furthermore, the evaluation generated numerous insights into the applicability of different

approaches on models and the use case of chatbot applications.

4.3 Application Prototype

The application prototypes combine the gathered insights into a prototypical chatbot application that

is enhanced with model interpretability. This allows the user to better understand model output

through an easily accessible UI implementation. The goal of the application was to implement a

prototype as close as possible to standards established by commonly used applications like ChatGPT

and enhance this with understandable explanations that fulfill the goals of XAI as close as possible.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

31

4.3.1 Application Architecture

The application architecture is as displayed in the following graphic. The prototype is a module-based

python application that adheres to the principles of object-oriented programming. The application

architecture is shown below (figure 4).

The application is divided into a main application file defining the UI and referencing the backend

controller, which is used for any interference and itself depends on other modules in the supplier

layer. The implement and provide the used models, implementations of interpretability approaches

and connected modules for visualization. Additionally, the application relies on various utility

functions.

The application prototype employs two distinct models: Mistral 7B Instruct v2.0 and GODEL v1.1 Large.

Mistral 7B Instruct 2.0, henceforth referred to as 'Mistral', is a version of the Mistral 7B model,

specifically fine-tuned for chat interactions through instruction tuning. GODEL diverges in architectural

design, as it is an encoder-decoder model for sequence-to-sequence text generation. Its highly reliant

input text for answer generation and contrasts with Mistral, which leverages its extensive pretraining.

Mistral was chosen as the main underlying Large Language Models. Mistral 7B is among the highest

performing models, outputting high quality text of high conversational quality. Through this it

FIGURE 4: GRAPHIC DEPICTION OF APPLICATION ARCHITECTURE.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

32

maintains remarkable efficiency during runtime. In total it best fulfills two of user needs defined earlier

for chatbots: language understanding and personalization. It furthermore employs several significant

improvements outlined earlier and represents the widely used class of decoder only models, especially

in chatbot settings. Additionally, GODEL was added for three main reasons. Firstly, GODEL's

comparatively smaller size, compared with counterparts like Mistral or LlaMa 2, allows it to operate

on local systems with a satisfactory performance and leads to better compatibility with free or low-

cost hosting services. While Mistral is capable of local deployment, it demands robust hardware and

an investment in hosting infrastructure for optimal performance. Moreover, GODEL is paired with

PartitionSHAP, which is the most efficient interpretability approach and intended to be included as a

showcase. Lastly GODEL is highly dependency on input data, yielding more detailed explanations for

specific inputs and therefore presenting the case for XAI in a different model context.

4.3.2 Interpretability Implementation

Two interpretability approaches were utilized, as the two models present different possibilities. For

Mistral, a KernelSHAP implementation from the captum library was used, using the SHAP framework

to interpret the model's predictions. In the case of GODEL, the used interpretability approach was

PartitionSHAP. Additionally, a simple visualization of model attention was implemented.

As KernelSHAP is implemented for Mistral it similarly is the main interpretability approach used in the

prototype. KernelSHAP and PartitionSHAP provide high quality explanations within a reasonable

performance, especially compared to Shapley Value Sampling. Compared to methods like LIME or

other model agnostic and model specific approaches they have proven to be more versatile and

significantly easier to implement while maintaining high quality. Both approaches benefit from the

foundational principles of SHAP and Shapley values, ensuring high consistency in explanation delivery

and robust expressive power when visualized effectively. A potential confusion arising from negative

SHAP values was mitigated with an abstraction technique. Attention visualization was chosen as an

additional reference interpretability method, because of its easy implementation and the possibility

of abstraction into the same user interface. The implemented approaches present a total of three

different visualizations of explanations, depending on the specific method. These will be described in

the following.

The main explanation interface abstracts SHAP and attention values in the form of marked up text. It

employs eleven distinct 'feature importance buckets', spanning a scale from -5 to +5. Each input token

is allocated to a bucket based on its combined SHAP or attention value. The bucketing algorithm

programmatically establishes thresholds that evenly distribute the range of values, splitting them into

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

33

negative impact (-5 to -1) and positive impact (+1 to +5) buckets, with a separate category for values

converging towards zero. For attention values, which inherently cannot be negative, the

corresponding negative buckets are omitted. These buckets are utilized for SHAP values to display

feature importance comprehensively. End-users can easily grasp the relative importance of input

tokens, with the most impactful tokens highlighted in magenta and the least impactful, or those with

negative SHAP values, marked in blue. An example is visible below (figure 5). This color scheme aligns

with the conventional SHAP value color-coding, leading to an intuitive understanding of feature

importance akin to the color-coded graphs used in methodological evaluations.

FIGURE 5: SCREENSHOT OF CUSTOM EXPLANATION VISUALIZATION.

The application's second visualization feature for interpretability is exclusively devised for SHAP value

attributions created using GODEL and PartitionSHAP and is derived from the interactive plotting

capabilities of the shap package. The shap text graphics allow for a granular, token-to-token

attribution that precisely shows the SHAP values associated with each token. For this, the shap

package generates an interactive HTML-based graph. This visualization is a scientifically more precise

rendition of the model's decision processes. However, it was observed that the complexity inherent

in understanding SHAP values might mean that this display is confusing users lacking expertise in XAI.

To avoid potential confusion, this advanced visualization has not been incorporated into the

application's primary interface tab but into a secondary one. Nevertheless, for professional users with

a foundational understanding of SHAP values and a background in XAI, this level of detail is valuable.

It provides an in-depth comprehension of the interpretations of AI decisions. Therefore, this advanced

visualization is offered as an option within the application but is conditionally available — it is present

only when interacting with GODEL and when utilizing explanations derived from PartitionSHAP. An

example of the view is visible below (figure 6).

FIGURE 6: SCREENSHOT OF INTERACTIVE SHAP TEXT GRAPHIC.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

34

Thirdly, the application also displays an explanation graph for input token attribution. The shown

graphs are based on the graphics created for the evaluation of different approaches and included as

an additional explanation output for knowledgeable users. Similarly, it is displayed in the

“Explanations” tab meant to address users with more background knowledge. In difference to the

interactive shap graphic it is displayed for KernelSHAP and PartitionSHAP based SHAP values and

therefore also both models. The graphic has not been implemented for attention visualization because

of a lack of informative value.

4.3.3 User Interface

The UI leverages Gradio to provide an easy user experience. The emphasis was placed on developing

a simple yet informative user interface that aligns with the accessibility standards of conventional

chatbot applications and the defined user need of high user experience. For this, Gradio provides a

suite of fitting components and utilities. Which are used throughout the entire application for the UI

alongside utility functions like examples and informative messages to users. However, Gradio lacks

the support of interactive HTML elements to display interactive explanations from the shap library. A

custom component was devised to serve as a container for such functionality, based on a provided

workflow from Gradio. This resulted in a custom iFrame component with only minor modifications

from an existing template component.

4.3.4 Hardware and Hosting

The application necessitates a substantial amount of RAM for operations, as it is designed to load two

full models into memory. Despite these requirements, the application can run locally on machines

equipped with 16 GB of RAM or more. The incorporation of a GPU can significantly enhance the

efficiency of the interpretability features. For demonstration purposes, the application was hosted on

Huggingface Spaces, which provides an accessible platform for deploying machine learning models,

along with hardware acceleration capabilities. During the showcase and evaluation phase, the

application was operated on a virtual machine configured with a 4-core CPU, 15 GB of RAM, and a

Nvidia T4 GPU equipped with 16 GB of memory. The operational cost for this setup is $0.60 per active

hour. Within this environment, the Mistral model was configured to run exclusively on the GPU. This

was achieved through the utilization of the same 8-bit Matrix Multiplication as in the evaluation step.

Conversely, the GODEL model was allocated to run on the CPU using standard RAM, a configuration

that suits the less demanding nature of the smaller-sized model and the PartitionSHAP interpretability

method.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

35

5 Results

The forthcoming section will provide a concise review of the evaluations conducted on Large Language

Model interpretability and the application prototype. A more comprehensive examination will be

dedicated to the application prototype, considering its significance as the central implementation of

this thesis. The evaluation of the prototype will be structured around the predefined framework and

will additionally include a compilation of additional findings.

Throughout the evaluation the two steps focus on different previously defined goals, desirable

properties, and user expectations. The research done on LLM interpretability focuses on desired

interpretability approach properties as defined. Henceforth the prototype evaluation focuses on the

overall goals of XAI and the previously defined user expectations towards chatbot applications. All

these properties, goals and user expectations will be outlined again shortly.

5.1 LLM Interpretability

The interpretability of Large Language Models, specifically the chosen examples GPT-2, Mistral 7B,

LlaMa 2 7B and partly also GODEL, was evaluated with the focus on the potential usage in chat

applications. For this, an evaluation focused on the desirable properties of interpretability methods

was performed, separated into qualitative evaluation of the explanations and performance evaluation

through the runtime of different methods. Refer to the repository listed in the annex for all results

and a selection of results for the mistral model.

5.1.1 Explanation Quality

The most important consideration for the quality of explanations are the fidelity and consistency of

explanations. Fidelity, which is the measure of how accurate an interpretability method or the

explanation reflects the internal decision-making process of the model, is a general concern and

should be fulfilled as much as possible by any method. Consistency describes how well a method can

handle variations in input and consistently provide similar results. Consistency is especially important

in the context of the chatbot use case as the textual input can vary greatly. The results and

observations connected to these two properties will be outlined in the following.

Fidelity

Fidelity must be mostly assumed based on theoretical foundations and is complicated to test in an

interpretation setting, especially since only limited approaches to objective evaluation of fidelity exist.

Based on the properties of LIME, KernelSHAP and Shapley Value Sampling an acceptable to good

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

36

fidelity can be assumed. Upon further comparing the results of LIME and KernelSHAP with that of

Shapley Value Sampling, which is the approach with the highest theoretical fidelity of the three, this

assumption could be confirmed (see annex for all attribution graphs for Mistral). It can be observed

that similar or the same words, i.e., “happiness,” or “money” are attributed with the higher attribution

scores across all three methods and the simplified sequence attribution graphs, i.e., for Mistral (see

Annex). Upon comparison with a the more detailed token to token attribution graphic that can be

created using Shapley Value Sampling, the matching attribution between methods can be further

confirmed. Similar observations could be made with the results of GODEL and PartitionSHAP, where

the attribution of words like “happiness” or “money” is high. It must be noted that the results of a

post hoc interpretation of the Mistral model and the GODEL model cannot be directly compared as

the models display two different architectural styles. Nevertheless, like the other approaches, it can

be assumed that PartitionSHAP does have adequate fidelity based on theoretical foundations.

However, another observation about the handling of input features by the method was made in the

process which can impact the reliability of the theoretical fidelity of all methods used on LLMs.

MFIGURE 7: SEQUENCE ATTRIBUTION GRAPH FOR MISTRAL WITH KERNELSHAP.

The graphic above (figure 7) shows the explanation graph of the original input “Does money buy

happiness?”, combined with prompting tokens and a system prompt for the Mistral Model. Upon

inspecting the shown explanations, it’s clear that token attribution is calculated on tokens such as “[“,

“INST “, “/”, etc. This is done for each token separately. However, correct would be using “[INST/]” as

one token and additionally not attributing anything to the value at all, as it is a token used as part of

the prompting of the model. At least when trying to attribute the input and not the impact of wrong

prompt formatting. This behavior of explanations persists across all models that need a specially

formatted prompt and rely on prompt tokens, i.e., also LlaMa 2 and GODEL. Additionally, it is visible

that connected words are separated by the model tokenizer. The separation of words and tokens into

fragments is most certainly tokenizer behavior, which is expected when using the model in a normal

way, as the model will have access to the entire input sequence (all features/tokens) when generating

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

37

output text. In this case, the splitting of words into tokens does not impact model behavior. When

used as part of an interpretability method this is not necessarily the case; as perturbation-based

approaches like the tested LIME, KernelSHAP and Shapley Value Sampling evaluate every (or most)

possible combination of input features through masking out input features/tokens. Due to the

described token behavior this means that fragments are handled as independent tokens. Which, apart

from the attribution of fragments, can lead to two different behaviors. Firstly, evaluation of feature

combinations where a token used for prompting can be partly or completely masked out as part of

the perturbation process and the model is used in a way it is not designed for. Secondly, sentence

combinations that are not represented in English language or have an entirely different meaning might

be created as a perturbation.

Considering the way tokens are handled and the fact that perturbation-based methods rely on feature

independence, which is not inherently present in natural language contexts, it is difficult to definitively

assess the fidelity of these interpretability methods. However, when viewed through a logical lens, the

overall trends and indications provided by interpretability methods look promising.

Consistency

When comparing the output of different methods both on the same model and on different models a

lack of consistency between explanations stands out. This is the case when comparing different

methods and when comparing explanations of the same method. The lack of consistency is quite

strong, visible i.e. on the attribution of the word “happiness” across LIME and KernelSHAP with Mistral

and LlaMa 2 models: The theoretically comparable attribution ranges from +2.22 to +30.65, although

it must be noted that the trends align across all methods and models – “happiness” is important to

the model output. Still there is a wide range in the attribution between methods. Furthermore, using

the same input several times on the same method and model also shows discrepancies (see annex for

graphs on Mistral). It is questionable if the variance in attribution stems from the interpretability

method or the variance in model predictions. However, the hyperparameter controlling the

randomness of the model is set to a default of 1.0, which should lead to stable answers. This would

indicate inconsistencies of the interpretability methods. The overall reason for this lack of consistency

remains unclear. However, a technical issue with the implementation code in this thesis is out of

question since the value is created by the libraries and not manipulated further.

5.1.2 Runtime

The results below highlight runtime in on the same prompt and with the same model settings. Models

that include prompting abilities (like Mistral and LlaMa 2) were prompted as needed by the model,

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

38

which can lead to difference in the amount of input tokens. This represents a factor potentially leading

to minor inaccuracy in the results, however overall trends are still reflected accurately in the results.

Runtime was evaluated from the first call of the class creating interpretations until the calculation

finished. Since it was not possible to implement PartitionSHAP on Mistral or LlaMa they have not been

evaluated in combination. Nevertheless, the PartitionSHAP results on GPT-2 are included to display

the significance of runtime difference relative to other methods. The first showcased results exclude

Shapley Value Sampling for clarity, as the runtime can far exceed that of other methods. Shapley Value

Sampling results are therefore displayed separately further below.

FIGURE 8: GRAPHIC DISPLAYING RUNTIME OF DIFFERENT INTERPRETABILITY METHOD AND MODEL COMBINATIONS.

Three key observations could be made from the data shown above (figure 8). Upon first analysis, an

evident correlation between the size of a model and the runtime of its interpretability methods is

clear. This correlation is demonstrated by the contrast in runtime between the 1.5 billion parameter

sized GPT-2 model and the larger seven billion parameter models such as Mistral and LlaMa 2. The

runtime increase between GPT-2 and Mistral is distinct, with a runtime percentage increase of 1620%

on CPU and 400% on GPU for KernelSHAP. A similar picture is presented by the results for LlaMa 2.

When the runtimes for GPT-2 are examined in isolation, PartitionSHAP emerges as significantly more

efficient than LIME and KernelSHAP, particularly when a GPU is used for acceleration. On average,

runtime with PartitionSHAP is between 30% to 50% of other methods under evaluation. Lastly, the

deployment of GPU-based hardware acceleration has been shown to drastically reduce the runtime

of interpretability methods, even for larger models like Mistral and LlaMa 2. When comparing the

performance on a CPU alone to that with GPU acceleration it can be observed that the runtime for

KernelSHAP and LIME can be reduced to below one minute. This is a strong improvement from the

LIME
Kernel
SHAP

Partition
SHAP

LIME
Kernel
SHAP

LIME
Kernel
SHAP

GPT-2 GPT-2 GPT-2 Mistral 7B Mistral 7B LlaMa 2 7B LlaMa 2 7B

cpu runtime 00:46 00:40 00:21 15:11 11:28 12:02 11:45

gpu runtime 00:12 00:11 00:03 00:56 00:55 00:53 00:53

00:00

02:53

05:46

08:38

11:31

14:24

17:17

R
u

n
ti

m
e

(m
m

:s
s)

Combined Runtime Comparison

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

39

pure CPU runtime, which exceeds 10 minutes for KernelSHAP and LIME. In certain instances, the

runtime with GPU acceleration can decrease to as low as 6% of the runtime required on a CPU.

Shown on the right (figure 9) is a singular graphic

for the runtime of Shapley Value Estimation across

all three evaluated models and for both CPU and

GPU acceleration. The generation of explanations

with these methods was stopped after a maximum

of 4 hours, at which point the calculations using a

CPU were not finished. Again, it is visible that a

GPU can significantly increase the efficiency of any

method and model. Compared to the other

methods, the runtime of Shapley Value Sampling

is clearly far out of range of any other methods, as

the runtime increases more than 2307% compared

to KernelSHAP with Mistral.

5.2 Implementation Evaluation

The focus of the entire prototype evaluation was how the defined goals of XAI and the user

expectations towards chatbots can be fulfilled by the prototype. Based on this, the evaluation of the

implementation, specifically the application prototype, was done using the established evaluation

framework. Through the framework it was possible to evaluate the XAI goal of explainability, which is

how well an AI system can explain model decisions and provides insights into the logic and reasoning

underlying those decisions. The quality of explanations was additionally evaluated based on a few

examples and separated from the testing as part of the framework. Apart from general explanation

quality it was evaluated how well the defined user expectations towards UX/UI, language

understanding and personalization could be fulfilled. It is encouraged to verify certain results by trying

out the prototype application by hand. All evaluations, if not specifically noted otherwise, were run in

an accelerated environment as outlined in the implementation section and using the Mistral 7B

Instruct model. GODEL was also used in the specified accelerated virtual environment.

5.2.1 Qualitative Evaluation

The qualitative evaluation focuses on the fulfillment of user expectations. Three of the most important

user expectations towards chatbots have been previously defined – UX/UI, which is the expectation

FIGURE 9: GRAPHIC DISPLAYING RUNTIME OF SHAPLEY VALUE SAMPLING WITH

DIFFERENT MODELS.

GPT-2
Mistral

7B
LlaMa
2 7B

cpu runtime 0:06:06 4:00:00 4:00:00

gpu runtime 0:00:58 0:38:46 0:42:46

0:24:00

1:00:00

1:36:00

2:12:00

2:48:00

3:24:00

4:00:00

R
u

n
ti

m
e

(h
h

:m
m

:s
s)

Shapley Value Sampling Runtime

cpu runtime gpu runtime

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

40

of intuitive and stringboard user experience through UI, language understanding, describing the

capability to process and understand language in a way similar to humans and personalization, which

describes how well the application can represent a conversation context. The fulfillment of these three

expectations is important to evaluate if an interpretable chatbot application can still maintain a

performance on the level of typical openly available software and to draw conclusions towards the

practicability of such implementation in other software. The fulfillment of a good user experience was

less focused on the quality of the user interface, as high-quality components are provided by Gradio.

Additionally, some insights on explanation quality in the prototype could be compiled. These will also

be referred to below.

User Expectations

One of the most notable features of good user experience apart from a simplified user interface is the

performance of the application. In the context of a chatbot this specifically is the speed to answer.

When using the application, set to Mistral and without any explanations, answers are generated

withing a few seconds. The answers are of a high quality, which was to be expected from a model that

scores high on most common benchmarks (Jiang et al. 2023). The answer to the example “Does money

buy happiness?” reads as follows: “Money can provide certain material comfort s and financial security

that can contribute to overall well - being and happiness. However, beyond a certain point, additional

wealth does not necessarily lead to greater happiness.[…].” Upon starting a conversation and asking

follow up questions, the model gives reasonable responses. From this conversation and similar ones,

the prototype, using Mistral in a normal response mode, has a good UX/UI and the model shows

adequate language understanding and personalization.

When using the explanation method implementation to augment Mistral model responses the time

to answer increases significantly. In the testing setup it takes 62 seconds to generate an answer

including an explanation. This time increases with more input tokens, i.e., when starting a

conversation, as the model takes all (or most) of the conversation history as input. Upon evaluation a

runtime of up to 250 seconds could be recorded. Considering this fact, it can be determined that the

user experience is significantly impacted when additionally generating explanations. Otherwise, the

model still displays the same qualities since model capabilities are not impacted by the interpretability

approach.

Mistral model responses can appear as unfinished and cut off, which is an error in the model usage of

Mistral itself, that could not be mitigated. The model setting should not lead to the shown behavior.

Another issue with the application quality is the formatting of output text. Because of this, some text

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

41

can appear with wrong whitespaces or missing special characters such as hyphens or apostrophes.

Both issues can be considered as prototype issues that wouldn’t persist on a production application.

Explanation Quality

When examining explanations more closely for transparency it is evident that the generated

explanations attribute importance to input tokens in an expected fashion. This aligns with the insights

generated in the first evaluation of LLM interpretability. This means that i.e. for the example “Does

money buy happiness?” the most important words by their combined SHAP value are “money” and

“happiness”. This is clearly visible in the interface highlighting the most important tokens, as shown

below (figure 10). When also adjusting the system prompt a difference in input token attribution can

be observed.

FIGURE 10: SCREENSHOT OF SHAP BASED EXPLANATION.

With a model like GODEL, the picture presents itself differently. As the model is basing most of its

input on additional knowledge and less on pre-training the explanations clearly show which parts of

the additional knowledge have the largest impact on the answer. With the example of “Does money

provide happiness?” SHAP clearly attributes a significant part of the answer generated by GODEL on

the additional knowledge (“Some studies have found a correlation between income and happiness, but

this relationship often has diminishing returns. From a psychological standpoint, it's not just having

money, but how it is used that influences happiness.”). This clearly represents the models’ internal

workings as generative sequence to sequence model.

5.2.2 Framework Based Evaluation

The evaluation framework was developed to formalize a testing process that can assess the

helpfulness of explanations and thereby how well the XAI goal of explainability was fulfilled. In the

testing framework this is formalized by a helpfulness score that encompasses the fulfillment of

explainability, as well as the three subgoals of XAI, as defined in the fundamentals – transparency,

interpretability, and understandability. Using the described evaluation framework, the prototype was

evaluated on three metrics across ten different combinations of input message, system prompt and

conversation history.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

42

These metrics are:

1. Application-grounded helpfulness score (label α).

2. Human-grounded based helpfulness score (label η).

3. Scoring delta between SHAP and Attention Visualization.

The following graphic (Figure 11) depicts the application-grounded and human-grounded evaluation

scores for each input and method. Refer to the annex for detailed graphs, showing application- and

human-grounded evaluation separately. This is combined with the delta between the two methods as

a measure of competitive performance. Shown are the scores for each of the ten input combinations,

labeled alphabetically from A to J. The entire evaluation was done using Mistral and KernelSHAP,

henceforth references of SHAP explanations refer to explanations created by KernelSHAP on the

Mistral Model.

FIGURE 11: GRAPHIC DISPLAYING EVALUATION SCORES AND SCORE DELTA

These combined insights display the helpfulness across a range of different scenarios and two different

audience personas. It also gives an indicator for the performance compared to the easiest approach

to interpretability, attention visualization. Several observations can be made based on the two

displayed graphics. Firstly, the helpfulness scores vary between the different inputs, across both SHAP

explanations and attention visualization explanations. This is the case for application- and human-

grounded evaluation. Reasons for this could be too high variation between the different test inputs or

a lack of consistency of explanations. When further comparing the rating for different inputs it

becomes clear that it is a lack of consistency in interpretations, as the ratings for more similar inputs,

0,0

+1,0

+2,0

+3,0

+4,0

+5,0

0

1

2

3

4

5

A B C D E F G H I J

H
el

p
fu

lln
es

s
Sc

o
re

Test Input Label

Combined Helpfullness Scores and Delta

α - KernelSHAP α - Attention η - KernelSHAP

η - Attention α - Delta η - Delta

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

43

like A and B, still differ strongly (see annex for all table of all test input and model responses). This

aligns with insights gathered in earlier evaluations. What is unclear is if this is an inconsistency in

model interpretations or a representation of accurate explanations and a variation in the model,

impacted by the slight differences in test input. Additionally, it is evident that the SHAP

implementation consistently outperforms the Attention Visualization implementation, visible by the

positive delta value. This was to be expected, as Attention Visualization is a strongly criticized

approach providing the bare minimum of interpretability.

The helpfulness scores can also be displayed

in an averaged form across all tested inputs,

as visible in the table on the left (table 3). This

table further enforces some of the

observations made based on the graphic. In

the table, a clear difference between application and human grounded evaluation is evident, even

when averaged. Additionally, the delta between scoring of the SHAP implementation and Attention

Visualization is clearly visible, as it is above +1 for both evaluation steps.

Overall, it can be determined that the SHAP implementations perform fine on the established scale.

The application reached an average of 3,1 of 5 in application-grounded helpfulness rating and 2,9 of 5

in human-grounded helpfulness scoring. However, if the max score of 5 represents perfect

explainability, it can be stated that the goal of explainability could not be fully reached. This is the case

for both knowledgeable and not knowledgeable users, represented by application- and human-

grounded evaluation respectively.

5.3 Discussion

The shown results present conclusive evidence to discuss the viability of implementing post hoc

interpretability and achieved explanation quality with Large Language Models. It also shows the

feasibility of a Chatbot application that explains the impact of input features on the model output of

an auto-regressive Large Language Model in an understandable way and whether they can maintain

the user expectations connected to them. However, the results also show several interesting issues

that need to be further discussed, which will be done in the following.

5.3.1 Explanation Quality

As previously noted, a significant issue exists with the explanation quality of interpretability methods

applied to Large Language Models due to their indiscriminate attribution of importance to all tokens,

TABLE 3: OVERVIEW OF AVERAGE HELPFULNESS SCORES AND DELTA.

 Application
Grounded Eval

Human
Grounded Eval

SHAP 3,1 2,9

Attention Visualization 1,8 1,9

Delta +1,3 +1,0

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

44

which is particularly problematic when using a masking technique. This indiscriminate attribution

often results in the fragmentation of special tokens and misuse when masking is applied to parts of

prompt tokens. A similar problem arises with split words, where masking can lead to the formation of

non-dictionary words, which are not recognized as part of English or any other language. This issue

stems from the feature independence assumption that underpins methods like KernelSHAP, LIME, and

Shapley Value Sampling, and represents a core criticism of perturbation-based interpretability

methods. Moreover, these methods typically fail to account for grammatical dependencies between

words when masking, which can alter the intended meaning of word combinations, such as "bad luck."

However, in NLP the relationship between words and their contextual meaning is critical.

In theory, the clustering feature of PartitionSHAP could be adapted to align with grammatical features,

but as of now, there is no such implementation available in the public domain. Additionally, a new

approach, GrammarSHAP, was introduced as an interpretability approach that takes grammatical

structures into account; however, its code has not been made publicly available, and its performance

lags considerably behind that of PartitionSHAP (Mosca et al. 2022). Overall, adjustments to

interpretability methods are needed to better account for use cases in NLP as current principles. Most

importantly, the principle of feature independence cannot be applied to natural language input.

Furthermore, this partly wrongful attribution of token and text fragments raises questions about the

actual fidelity of methods relying on perturbations, when applied to LLMs.

5.3.2 Helpfulness of Explanations

This work has proven that different interpretability approaches can create sound explanations within

the context of different models. It has also been proven that the implementation of an application

prototype that implements such methods is possible and a high quality can be achieved. However,

and this is reflected in the previously described results, the helpfulness of the generated explanations

can be questioned. While, when compared to attention visualization, the rating of SHAP based

explanations is particularly good, the general helpfulness rating of the implementation is lacking

behind. This is only partly represented by the combined average evaluation rating of 3.4 on a 5-point

scale.

The observed results on explanation quality of the prototype lead towards a conclusion of limited

actual helpfulness. Overall, the explanations can be helpful in certain use cases. However, they do

require knowledge of the workings of the model, at the very least a sound understanding of the impact

of a prompt, conversation history and system prompt. The actual helpfulness of the chosen

explanation form for average human users and the generated explanations in form of SHAP Values

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

45

should be questioned, as the additional insights gained from the explanations are limited. They do

proof however that the model is generating output based in part on the input, with certain tokens

being more important. What remains unseen without using extra approaches like i.e., baseline values,

is its reliance on pretraining, as this is not explained through interpretations. This leads to one of the

key issues with interpretability of Large Language Models, as extensive pretraining on unlabeled data

is one of the key attributes of the model category. Currently available approaches to machine learning

interpretability do not provide any solution to this. When utilizing GODEL and PartitionSHAP, a clearer

association between model input and output is possible. However, this usage of GODEL might fairly

represent a chatbot that uses additional knowledge from i.e., a pdf converted into embeddings or a

browser search, but it does not fairly represent the behavior displayed by language generation models

prompted for open ended text generation.

The captum library has introduced tooling that supports the usage of baseline values (Miglani et al.

2023); however, this approach is barely applicable in a scalable way. Since this context would require

programmatic determination of a reasonable baseline text values/equivalents that can be used as a

replacement for i.e., the value “happiness” in the “Can money buy happiness?” example. Furthermore,

it is still unclear if generated explanations are helpful to users to gain a better understanding of model

outcomes, which this work does not confirm and should be determined through i.e., large-scale user

interviews. Certainly it is clear that the adoption of tools such as ChatGPT has not been hindered by

the lack of explainability (Mollman 2022). A potential solution to this could be combining approaches

of interpretable machine learning with research such as the mapping of neurons in LLMs (Schaeffer et

al. 2023). However, from a perspective of model and application creator, interpretability can

nonetheless provide real value. Especially when utilizing a model that is more dependent on input,

like GODEL or a use case that is highly dependent on input, like sentiment classification. Furthermore,

generated explanations generate a clearer, helpful picture of feature importance. This is why many

studies focus on such tasks. In contrast to that, the value of explanations for open-ended generation

based on open question as i.e. “Does money happiness?” is clearly limited, for non-knowledgeable

users and specialists in the field alike.

5.3.3 Runtime and Scalability

SHAP methods perform well in explanation quality compared to most other interpretability methods.

However, as with most modern interpretability methods, they suffer from a higher runtime when

executed on more input features., especially when targeting large language models with many layers.

In the run tests it was evident that an increase in model complexity and layers leads to a relative

increase in the computation time of the test approaches. This is inherent to their characteristics,

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

46

especially with perturbation-based approaches like LIME, KernelSHAP, and even greater with Shapley

Values. The runtime comparison done as part of the evaluation further proves this point. Notably,

these tests were also run with models that rank among the smaller or smallest ones in the domain of

Large Language Models: GPT with 1.5 billion, LlaMa 2 7B and Mistral 7B with seven billion Parameters.

As the runtime difference between 1.5 million and seven billion is already noticeable, it must be

assumed that the difference between a seven billion parameters model and models like the seventy

billion parameter-sized LlaMa 2 is even higher. Depending on the hardware acceleration setup and

the method, the runtime might well increase into the range of (double-digit) hours, even with one of

the most performant methods, PartitionSHAP.

Furthermore, it was proven that there is a clear connection between interpretability performance and

computing power. With adequate hardware, the runtime can be lowered significantly. However, the

computing resources needed for this must be considered. Time to create interpreted results below

one minute was only achieved with a small to the minimum amount of input tokens possible,

combined with the strongest available hardware acceleration in the given environment, which costs

above 10€ per hour and consists of 80GB RAM and A100 GPU with 40GB memory. This is a setup fit

for model tuning or training but certainly not for consistently running an application. The application

prototype, when supported by adequate hardware, can respond with text and explanation within 60

seconds. While this is also quite low, especially compared to pure CPU performance and other

methods, it is not adequate for real world applications and does not fulfill a common user expectation

for software.

Overall, acceptable performance of interpretability methods, even PartitionSHAP, is only achievable

with significant computing power. Computing power is beyond reason for production applications.

Through the described results and this assumption, it is evident that the currently available methods

of model interpretability lack highly performant and runtime-efficient methods. This is most definitely

the case when (close to) just-in-time explanations are desired. Recently, modern, better, and faster

approaches like FastSHAP (Jethani et al. 2021) have been introduced, although they are still to be

proven as suitable approaches on scale and there is no current implementation on Large Language

Models.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

47

6 Conclusion

In this thesis, the exploration and development of an interpretable prototype chat application have

been presented. The prototype was designed to combine principles of Explainable AI, modern

transformer based Large Language Models and interpretable machine learning. It furthermore

presents an advanced user interface resulting in a functional chat application. This involved extensive

exploration and assessment of various methodologies as preparation for the conception, design and

building process of the presented application prototype. The integration of XAI into applications

comparable to industry standards, such as ChatGPT, has been thoroughly investigated, highlighting

potential challenges, and assessing the practicality of such integrations. It has been established that

the creation of a functional prototype is achievable. This prototype can fulfill common user

expectations to a large part, if supported by adequate hardware. However, user experience is still

impacted and the interpretable chatbot application is not on par with other common chatbot

applications. Additionally, it could not be proven to what extend generated explanations are helpful

for users, both knowledgeable and not knowledgeable, especially in the context of auto-regressive

text generation models like Mistral 7B. Through the work it was possible to discover several important

points of needed improvement towards the applicability of post hoc interpretability methods for

transformer models and specifically Large Language Models. These limits include fundamental issues

with perturbation-based approaches like KernelSHAP and the performance of currently available post

hoc interpretability approaches. The presented work is limited by the grade of evaluations done on

the application prototype, especially the size of the testing user group. Furthermore, a more

scientifically sound evaluation framework could be developed to formalize testing. However, the lack

of formalized testing approaches for interpretability methods and their implementation represents a

general lack of current research. Additionally, more intense adaptation and tuning of currently

available approaches towards better usability with Large Language Models could have been done but

was deemed out of scope for this thesis.

Three main future research directions can be recognized based on the presented results. These focus

on enhancing currently existing methods for post hoc interpretability to account for LLM, especially

the extensive usage of prompting and their increasing size. Additionally, the complexity of LLMs calls

for the development of newer, innovative interpretability methods to create explanations fast and

with a higher explanatory value than currently existing methods. Finally, the convergence of XAI with

leading-edge research in foundational AI, as seen by anthropic and other research, might provide more

valuable insights into model decision than exclusively relying on method of machine learning

interpretability.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

48

In conclusion, this thesis has not only demonstrated the feasibility of integrating interpretability into

a chat application that aligns with industry standards but has also mapped the current limitations of

the field of XAI and available approaches of post hoc interpretability for transformer models. As an

initial venture into this field, significant contributions have been made towards identifying key areas

for future research and highlighting the crucial challenges that need addressing.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

VIII

Publication Bibliography

Abdulla, Hussam; Eltahir, Asim Mohammed; Alwahaishi, Saleh; Saghair, Khalifa; Platos, Jan; Snasel,

Vaclav (2022): Chatbots Development Using Natural Language Processing: A Review. In : 2022 26th

International Conference on Circuits, Systems, Communications and Computers (CSCC). Crete,

Greece, 7/19/2022 - 7/22/2022: IEEE, pp. 122–128.

Abid, Abubakar; Abdalla, Ali; Abid, Ali; Khan, Dawood; Alfozan, Abdulrahman; Zou, James (2019):

Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild. Available online at

http://arxiv.org/pdf/1906.02569.pdf.

Adamopoulou, Eleni; Moussiades, Lefteris (2020): Chatbots: History, technology, and applications. In

Machine Learning with Applications 2, p. 100006. DOI: 10.1016/j.mlwa.2020.100006.

Alec Radford; Karthik Narasimhan; Tim Salimans, Ilya Sutskever (2018): Improving Language

Understanding by Generative Pre-Training. Available online at

https://www.semanticscholar.org/paper/Improving-Language-Understanding-by-Generative-

Radford-Narasimhan/cd18800a0fe0b668a1cc19f2ec95b5003d0a5035.

Amatriain, Xavier; Sankar, Ananth; Bing, Jie; Bodigutla, Praveen Kumar; Hazen, Timothy J.; Kazi,

Michaeel (2023): Transformer models: an introduction and catalog. Available online at

http://arxiv.org/pdf/2302.07730v3.

Ancona, Marco; Ceolini, Enea; Öztireli, Cengiz; Gross, Markus (2019): Gradient-Based Attribution

Methods. In Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, Klaus-Robert

Müller (Eds.): Explainable AI. Interpreting, explaining and visualizing deep learning, vol. 11700.

Cham, Switzerland: Springer (LNCS sublibrary. SL 7, Artificial intelligence, 11700), pp. 169–191.

Antonini, Cédric (2023): Navigating the EU AI Act: How Explainable AI Simplifies Regulatory

Compliance. In Positive Thinking Company, 6/7/2023. Available online at

https://positivethinking.tech/insights/navigating-the-eu-ai-act-how-explainable-ai-simplifies-

regulatory-compliance/, checked on 11/6/2023.

Arras, Leila; Osman, Ahmed; Samek, Wojciech (2022): CLEVR-XAI: A benchmark dataset for the

ground truth evaluation of neural network explanations. In Information Fusion 81, pp. 14–40. DOI:

10.1016/j.inffus.2021.11.008.

Arrieta, Alejandro Barredo; Díaz-Rodríguez, Natalia; Del Ser, Javier; Bennetot, Adrien; Tabik, Siham;

Barbado, Alberto et al. (2019): Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

IX

Opportunities and Challenges toward Responsible AI. Available online at

https://arxiv.org/pdf/1910.10045.pdf.

Baehrens, David; Schroeter, Timon; Harmeling, Stefan; Kawanabe, Motoaki; Hansen, Katja; Mueller,

Klaus-Robert (2009): How to Explain Individual Classification Decisions, checked on 7/27/2023.

Beltagy, Iz; Peters, Matthew E.; Cohan, Arman (2020): Longformer: The Long-Document

Transformer. Available online at http://arxiv.org/pdf/2004.05150v2.

Bhattacharya, Aditya (2022): Applied machine learning explainability techniques. Best practices for

making ML algorithms interpretable in the real-world applications using LIME, SHAP and others.

Birmingham: Packt Publishing.

Covert, Ian; Lundberg, Scott; Lee, Su-In (2020): Explaining by Removing: A Unified Framework for

Model Explanation. Available online at http://arxiv.org/pdf/2011.14878.pdf.

Deng, Li; Liu, Yang (2018): Deep learning in natural language processing. Singapore: Springer.

Dettmers, Tim; Lewis, Mike; Belkada, Younes; Zettlemoyer, Luke (2022): LLM.int8: 8-bit Matrix

Multiplication for Transformers at Scale. Available online at http://arxiv.org/pdf/2208.07339.pdf.

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina (2018): BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. Available online at

https://arxiv.org/pdf/1810.04805.pdf.

Doshi-Velez, Finale; Kim, Been (2017): Towards A Rigorous Science of Interpretable Machine

Learning. Available online at http://arxiv.org/pdf/1702.08608v2.

Edoardo Mosca; Ferenc Szigeti; Stella Tragianni; Daniel Gallagher; Georg Groh (2022): SHAP-Based

Explanation Methods: A Review for NLP Interpretability. In Proceedings of the 29th International

Conference on Computational Linguistics, pp. 4593–4603. Available online at

https://aclanthology.org/2022.coling-1.406/.

Erik Štrumbelj; I. Kononenko (2010): An Efficient Explanation of Individual Classifications using Game

Theory. In Journal of Machine Learning Research. Available online at

https://www.semanticscholar.org/paper/An-Efficient-Explanation-of-Individual-using-Game-

%C5%A0trumbelj-Kononenko/7715bb1070691455d1fcfc6346ff458dbca77b2c?p2df.

Galitsky, Boris (2019): Developing Enterprise Chatbots. Learning Linguistic Structures. Cham,

Switzerland: Springer.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

X

Gunning, David; Aha, David W. (2019): DARPA's Explainable Artificial Intelligence Program. In AI

Magazine 40 (2), pp. 44–58. DOI: 10.1609/aimag.v40i2.2850.

Hao, Yaru; Dong, Li; Wei, Furu; Xu, Ke (2020): Self-Attention Attribution: Interpreting Information

Interactions Inside Transformer. Available online at http://arxiv.org/pdf/2004.11207v2.

Hariri, Walid (2023): Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its

Applications, Advantages, Limitations, and Future Directions in Natural Language Processing.

Hedström, Anna; Weber, Leander; Bareeva, Dilyara; Krakowczyk, Daniel; Motzkus, Franz; Samek,

Wojciech et al. (2023): Quantus: An Explainable AI Toolkit for Responsible Evaluation of Neural

Network Explanations and Beyond. In Journal of Machine Learning Research. Available online at

http://arxiv.org/pdf/2202.06861v3.

Hoffmann, Jordan; Borgeaud, Sebastian; Mensch, Arthur; Buchatskaya, Elena; Cai, Trevor;

Rutherford, Eliza et al. (2022): Training Compute-Optimal Large Language Models.

Holzinger, Andreas; Saranti, Anna; Molnar, Christoph; Biecek, Przemyslaw; Samek, Wojciech (2022):

Explainable AI Methods - A Brief Overview. In Andreas Holzinger, Randy Goebel, Ruth Fong, Taesup

Moon, Klaus-Robert Müller, Wojciech Samek (Eds.): xxAI - Beyond Explainable AI: International

Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and

Extended Papers. Cham: Springer International Publishing (Lecture Notes in Computer Science),

pp. 13–38, checked on 7/28/2023.

Jain, Mohit; Kumar, Pratyush; Kota, Ramachandra; Patel, Shwetak N. (2018): Evaluating and

Informing the Design of Chatbots. In Ilpo Koskinen, Youn-kyung Lim, Teresa Cerratto-Pargman,

Kenny Chow, William Odom (Eds.): Proceedings of the 2018 Designing Interactive Systems

Conference. DIS '18: Designing Interactive Systems Conference 2018. Hong Kong China, 09 06 2018

13 06 2018. New York, NY, USA: ACM, pp. 895–906.

Jethani, Neil; Sudarshan, Mukund; Covert, Ian; Lee, Su-In; Ranganath, Rajesh (2021): FastSHAP: Real-

Time Shapley Value Estimation. Available online at http://arxiv.org/pdf/2107.07436.pdf.

Jha, Ashish Ranjan (2023): Mastering Pytorch. Build powerful deep learning architectures using

advanced pytorch features. [S.l.]: Packt Publishing.

Jiang, Albert Q.; Sablayrolles, Alexandre; Mensch, Arthur; Bamford, Chris; Chaplot, Devendra Singh;

Casas, Diego de Las et al. (2023): Mistral 7B. Available online at

https://arxiv.org/pdf/2310.06825.pdf.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XI

Kaplan, Jared; McCandlish, Sam; Henighan, Tom; Brown, Tom B.; Chess, Benjamin; Child, Rewon et

al. (2020): Scaling Laws for Neural Language Models. Available online at

https://arxiv.org/pdf/2001.08361.pdf.

Kochkach, Arwa; Kacem, Saoussen Belhadj; Elkosantini, Sabeur; Lee, Seongkwan M.; Suh, Wonho

(2023): On the Different Concepts and Taxonomies of eXplainable Artificial Intelligence. In Akram

Bennour, Ahmed Bouridane, Lotfi Chaari (Eds.): Intelligent System an Patter Recognition. Third

international conference, vol. 1941. [S.l.]: Springer International Publishing (Communications in

Computer and Information Science), pp. 75–85.

Kokhlikyan, Narine; Miglani, Vivek; Martin, Miguel; Wang, Edward; Alsallakh, Bilal; Reynolds,

Jonathan et al. (2020): Captum: A unified and generic model interpretability library for PyTorch.

Available online at http://arxiv.org/pdf/2009.07896.pdf.

Lee, Raymond S. T. (2024): Natural language processing. A textbook with Python implementation.

Singapore: Springer.

Li, Haoran; Liu, Yiran; Zhang, Xingxing; Lu, Wei; Wei, Furu (2023): Tuna: Instruction Tuning using

Feedback from Large Language Models. Available online at https://arxiv.org/pdf/2310.13385.pdf.

Linardatos, Pantelis; Papastefanopoulos, Vasilis; Kotsiantis, Sotiris (2020): Explainable AI: A Review of

Machine Learning Interpretability Methods. In Entropy (Basel, Switzerland) 23 (1). DOI:

10.3390/e23010018.

Loukides, Michael Kosta (2023): What are ChatGPT and its Friends? Opportunities, costs, and risks

for large language models. First edition. Sebastopol, CA: O'Reilly Media, Inc.

Lundberg, Scott M.; Lee, Su-In (2017): A Unified Approach to Interpreting Model Predictions. In

Advances in Neural Information Processing Systems 30.

Madsen, Andreas; Reddy, Siva; Chandar, Sarath (2022): Post-hoc Interpretability for Neural NLP: A

Survey. In ACM Computing Surveys 55 (8), 155:1‐155:42. DOI: 10.1145/3546577.

Masís, Serg (2022): Interpretable Machine Learning with Python. Build explainable, fair, and robust

high… -performance models with hands-on, real-world exam. [S.l.]: Packt Publishing Ltd.

Miglani, Vivek; Yang, Aobo; Markosyan, Aram H.; Garcia-Olano, Diego; Kokhlikyan, Narine (2023):

Using Captum to Explain Generative Language Models. Available online at

http://arxiv.org/pdf/2312.05491.pdf.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XII

Miller, Tim (2017): Explanation in Artificial Intelligence: Insights from the Social Sciences. Available

online at http://arxiv.org/pdf/1706.07269v3.

Mollman, Steve (2022): ChatGPT gained 1 million users in under a week. Here’s why the AI chatbot is

primed to disrupt search as we know it. Available online at

https://finance.yahoo.com/news/chatgpt-gained-1-million-followers-224523258.html, checked on

2/5/2023.

Molnar, Christoph (2022): Interpretable machine learning. A guide for making black box models

explainable. Second edition. Munich, Germany: Christoph Molnar. Available online at

https://christophm.github.io/interpretable-ml-book/.

Molnar, Christoph (2023): Interpreting Machine Learning Models With SHAP. A Guide With Python

Examples And Theory On Shapley Values. Available online at https://leanpub.com/shap, checked on

11/18/2023.

Mosca, Edoardo; Demirtürk, Defne; Mülln, Luca; Raffagnato, Fabio; Groh, Georg (2022):

GrammarSHAP: An Efficient Model-Agnostic and Structure-Aware NLP Explainer. In : Proceedings of

the First Workshop on Learning with Natural Language Supervision. Dublin, Ireland: Association for

Computational Linguistics, pp. 10–16. Available online at https://aclanthology.org/2022.lnls-1.2,

checked on 5/16/2023.

Naveed, Humza; Khan, Asad Ullah; Qiu, Shi; Saqib, Muhammad; Anwar, Saeed; Usman, Muhammad

et al. (2023): A Comprehensive Overview of Large Language Models.

OpenAI (2023): GPT-4 Technical Report. Available online at https://arxiv.org/pdf/2303.08774.pdf.

Palacio, Sebastián M.; Lucieri, Adriano; Munir, Mohsin; Hees, Jörn; Ahmed, Sheraz; Dengel, A. (2021):

XAI Handbook: Towards a Unified Framework for Explainable AI. In 2021 IEEE/CVF International

Conference on Computer Vision Workshops (ICCVW). Available online at

https://www.semanticscholar.org/paper/XAI-Handbook%3A-Towards-a-Unified-Framework-for-AI-

Palacio-Lucieri/af85fa6837eac0a72f6ce22cd83643748ed7508f.

Peng, Baolin; Galley, Michel; He, Pengcheng; Brockett, Chris; Liden, Lars; Nouri, Elnaz et al. (2022):

GODEL: Large-Scale Pre-Training for Goal-Directed Dialog. Available online at

http://arxiv.org/pdf/2206.11309.pdf.

Radford, Alec; Wu, Jeff; Child, Rewon; Luan, David; Amodei, Dario; Sutskever, Ilya (2019): Language

Models are Unsupervised Multitask Learners. In. Available online at

https://api.semanticscholar.org/CorpusID:160025533.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XIII

Remmer, Eliott (2022): Explainability Methods for Transformer-based Artificial Neural Networks: a

Comparative Analysis. Stockholm, Sweden.

Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos (2016a): "Why Should I Trust You?": Explaining

the Predictions of Any Classifier. Available online at https://arxiv.org/pdf/1602.04938.pdf.

Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos (2016b): Model-Agnostic Interpretability of

Machine Learning. Available online at http://arxiv.org/pdf/1606.05386v1.

Rothman, Denis (2020): Hands-On Explainable AI (XAI) with Python: Interpret, visualize, explain, and

integrate reliable AI for fair, secure, and trustworthy AI apps: Packt Publishing Ltd.

Rothman, Denis; Gulli, Antonio (2022): Transformers for natural language processing. Build, train,

and fine-tune deep neural network architectures for NLP with Python, PyTorch, TensorFlow, Bert,

and GPT-3 / Denis Rothman. Second edition. Birmingham: Packt Publishing.

Sarti, Gabriele; Feldhus, Nils; Sickert, Ludwig; van der Wal, Oskar (2023): Inseq: An Interpretability

Toolkit for Sequence Generation Models. In Proceedings of ACL: System Demonstrations (DOI:

10.18653/v1/2023.acl-demo.40.

Schaeffer, Rylan; Khona, Mikail; Ma, Tzuhsuan; Eyzaguirre, Cristobal; Koyejo, Sanmi; Fiete, Ila R.

(2023): Self-Supervised Learning of Representations for Space Generates Multi-Modular Grid Cells. In

Thirty-seventh Conference on Neural Information Processing Systems. Available online at

https://openreview.net/forum?id=8ox2vrQiTF.

Schwalbe, Gesina; Finzel, Bettina (2023): A comprehensive taxonomy for explainable artificial

intelligence: a systematic survey of surveys on methods and concepts. In Data Min Knowl Disc 20

(93), p. 1. DOI: 10.1007/s10618-022-00867-8.

Shazeer, Noam (2020): GLU Variants Improve Transformer. Available online at

http://arxiv.org/pdf/2002.05202v1.

Su, Jianlin; Lu, Yu; Pan, Shengfeng; Murtadha, Ahmed; Wen, Bo; Liu, Yunfeng (2021): RoFormer:

Enhanced Transformer with Rotary Position Embedding. Available online at

http://arxiv.org/pdf/2104.09864v4.

Touvron, Hugo; Martin, Louis; Stone, Kevin; Albert, Peter; Almahairi, Amjad; Babaei, Yasmine et al.

(2023): Llama 2: Open Foundation and Fine-Tuned Chat Models.

Tunstall, Lewis; van Werra, Leandro; Wolf, Thomas (2022): Natural language processing with

Transformers. Building language applications with Hugging Face / Lewis Tunstall, Leandro von

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XIV

Werra, and Thomas Wolf ; foreword by Aurélien Géron. Revised (color) edition. Sebastopol, CA:

O'Reilly.

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones, Llion; Gomez, Aidan N. et al.

(2017): Attention Is All You Need. Available online at https://arxiv.org/pdf/1706.03762.pdf.

Vig, Jesse (2019): Visualizing Attention in Transformer-Based Language Representation Models.

Available online at https://arxiv.org/pdf/1904.02679.pdf.

Wang, Zheng; Long, Chen; Xu, Shihao; Gan, Bingzheng; Shi, Wei; Cao, Zhao; Chua, Tat-seng (2023):

LGM3A '23: 1st Workshop on Large Generative Models Meet Multimodal Applications. In ACM

Multimedia. Available online at https://www.semanticscholar.org/paper/LGM3A-'23%3A-1st-

Workshop-on-Large-Generative-Models-Wang-

Long/15c84a980eb2905c6dffb9f9abbea089074b9db8.

Wei, Jason; Tay, Yi; Bommasani, Rishi; Raffel, Colin; Zoph, Barret; Borgeaud, Sebastian et al. (2022):

Emergent Abilities of Large Language Models. Available online at

https://arxiv.org/pdf/2206.07682.pdf, checked on 1/22/2024.

Woodie, Alex (2021): One Model to Rule Them All: Transformer Networks Usher in AI 2.0, Forrester

Says. Available online at https://www.datanami.com/2021/02/16/one-model-to-rule-them-all-

transformer-networks-usher-in-ai-2-0-forrester-says/.

Yeh, Catherine; Chen, Yida; Wu, Aoyu; Chen, Cynthia; Viégas, Fernanda; Wattenberg, Martin (2023):

AttentionViz: A Global View of Transformer Attention. Available online at

https://arxiv.org/pdf/2305.03210.pdf.

Yenduri, Gokul; M, Ramalingam; G, Chemmalar Selvi; Y, Supriya; Srivastava, Gautam; Maddikunta,

Praveen Kumar Reddy et al. (2023): Generative Pre-trained Transformer: A Comprehensive Review

on Enabling Technologies, Potential Applications, Emerging Challenges, and Future Directions.

Available online at https://arxiv.org/pdf/2305.10435.pdf.

Yildirim, Savas; Asgari-Chenaghlu, Meysam (2021): Mastering Transformers. Build state-of-the-art

models from scratch with advanced natural language processing techniques. Birmingham: Packt

Publishing. Available online at

https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=29857

52.

Zhang, Biao; Sennrich, Rico (2019): Root Mean Square Layer Normalization. In Advances in Neural

Information Processing Systems 32.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XV

Zhang, Shengyu; Dong, Linfeng; Li, Xiaoya; Zhang, Sen; Sun, Xiaofei; Wang, Shuhe et al. (2023):

Instruction Tuning for Large Language Models: A Survey. Available online at

http://arxiv.org/pdf/2308.10792v4.

Zhao, Haiyan; Chen, Hanjie; Yang, Fan; Liu, Ninghao; Deng, Huiqi; Cai, Hengyi et al. (2023a):

Explainability for Large Language Models: A Survey. Available online at

http://arxiv.org/pdf/2309.01029.pdf.

Zhao, Wayne Xin; Zhou, Kun; Li, Junyi; Tang, Tianyi; Wang, Xiaolei; Hou, Yupeng et al. (2023b): A

Survey of Large Language Models. Available online at http://arxiv.org/pdf/2303.18223v12.

Zini, Julia El; Awad, Mariette (2023): On the Explainability of Natural Language Processing Deep

Models. In ACM Computing Surveys 55 (5), pp. 1–31. DOI: 10.1145/3529755.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XVI

Glossary

Word Description/Definition

EXPLAINABLE AI Explainable AI (XAI) refers to the notion of making AI systems human-
understandable and explain their operations, decisions, and underlying
mechanisms, aiming to increase transparency and trustworthiness.

(POST HOC) INTERPRETABILITY
METHOD

An interpretability method in is a technique used to create explanations
that make decision of machine learning algorithms understandable.

EXPLANATION An explanation in the context of XAI is a description or rationale
provided to clarify how a model arrived at a particular decision or
output.

TRANSFORMER The transformer architecture is a neural network-based architecture
relying on self-attention. It’s the leading neural network architecture.

AUTO-REGRESSIVE
TRANSFORMER

A type of transformer that generates sequences by predicting each
element of the sequence based on the previously generated elements.

BI-DIRECTIONAL
TRANSFORMER

A bi-directional transformer is a transformers network architecture that
reads input data in both forward and backward directions.

SEQUENCE TO SEQUENCE
TRANSFORMER

A transformer architecture excelling at the creation of output based on
sequence input such as translation tasks

PERMUTATION Permutation refers to the rearrangement of elements in a dataset or
sequence. A permutation is one such rearrangement.

PERTURBATION-BASED Perturbation-based methods involve using permutations of input
feature to evaluate the impact on a models output and decision
making.

GRADIENT-BASED Gradient-based interpretability approaches use the gradients
(derivatives) of model outputs to explain model decisions.

(COMPETITIVE) GAME THEORY Competitive game theory is a branch of mathematics and economics
that studies strategic interactions among rational decision-makers.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XVII

Annex

Showcase Link and Repositories

Thesis Webapp

Showcase Link: https://lennardzuendorf-thesis.hf.space/

Username: htw

Password: berlin@123

This Link leads to a hosted instance of the application prototype. The given password and username

are needed for access. This environment runs on a CPU, but a GPU acceleration can be activated again

for a limited time. The performance of CPU and GPU versions are not comparable.

Repository Link: https://github.com/LennardZuendorf/thesis-webapp

This repository contains all the code used to implement the application prototype. The application

structure is depicted in the application; folders are named accordingly. The code is extensively

commented to explain functionalities and actions and give credits to original authors (marked as

“CREDIT: “). The README.md provides a short guide on how the application can be run locally.

Additionally, the application can be hosted on any adequately equipped hardware through the

provided Dockerfile and the available docker image that can be found at the linked repository.

If not commented otherwise, all visible work/code in this repository can be considered the authors.

Credits are given on a function level with an indicator if code was copied, copied, and changed

(“adopted”) or inspired by somebody else’s work. The only exception to this is the custom component

that is saved in the components folder. It is based on a template component provided by the Gradio

framework that is mostly not the author’s work. Several minor changes are marked individually.

Thesis Files

Link: https://github.com/LennardZuendorf/thesis-files

This repository collects all other files used for this work. Most notably, these are several Jupyter

notebooks used for prototyping, testing, and implementation. An overview and a brief description of

each is given here. Each notebook is thoroughly commented on, including credit and advice on how

to run code. Code between notebooks is partially shared and copied across all notebooks. Additionally,

the repository contains the graphs and data that were created when evaluating LLM interpretability.

https://lennardzuendorf-thesis.hf.space/
https://github.com/LennardZuendorf/thesis-webapp
https://github.com/LennardZuendorf/thesis-files

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XVIII

The included notebooks are as follows:

• Exploration: shap – Notebook used to test the shap library and shap implementations for model

interpretability. Evaluated with GPT-2, GODEL, Mistral-7B Instruct and LlaMa 7B Chat.

• Exploration: captum - Notebook used for testing the captum library and different implementations

for model interpretability. Assessed with GPT-2, GODEL, Mistral-7B Instruct, and LlaMa 7B Chat.

• Exploration: BERTViz - Notebook used to test the BERTViz library and different attention

visualization approaches. Evaluated with GPT-2, GODEL, Mistral-7B Instruct and LlaMa 7B Chat.

• Exploration: inseq – Notebook used to test the inseq libraries for usage with GODEL and

interpretation of GODEL using GradientSHAP and Integrated Gradients.

• Evaluation: LLM Interpretability – Notebook used to evaluate and compare different post-hoc

interpretability approaches with different models. Results have been reflected on in the

respective part of this thesis. Evaluation run with various model and interpretability approach

implementation combinations.

If not commented otherwise, all visible work/code in this repository can be considered the authors.

Credits are given on a function level (marked as “CREDIT:”)

Package Forks

Link: https://github.com/LennardZuendorf/thesis-shap

Link: https://github.com/LennardZuendorf/thesis-captum

For testing and the purpose of fixing implementation problems, the shap and captum repositories

have been forked. Changes are mostly limited to small fixed and additional logging. The

contributions can be tracked through the git commit history.

The work in these repositories cannot be considered the authors, if not commented otherwise. The

specific contributions can be tracked with GitHub.

https://github.com/LennardZuendorf/thesis-shap
https://github.com/LennardZuendorf/thesis-captum

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XIX

Interpretability Method Evaluation Results

Data

Combined runtime data of all tested interpretability methods and models for both CPU and GPU.

model

method

runtime per hardware

GPU runtime CPU runtime

GPT-2 LIME 0:00:12 0:00:46

GPT-2 Kernel SHAP 0:00:11 0:00:40

GPT-2 Shapley Value Sampling 0:00:58 0:06:06

GPT-3 Partition SHAP 0:00:03 0:00:21

Mistral 7B LIME 0:00:56 0:15:11

Mistral 7B Kernel SHAP 0:00:55 0:11:28

Mistral 7B Shapley Value Sampling 0:38:46 4:00:00

LlaMa 2 7B LIME 0:12:02 0:00:53

LlaMa 2 7B Kernel SHAP 0:11:45 0:00:53

LlaMa 2 7B Shapley Value Sampling 4:00:00 0:42:46

Graphics

Runtime of interpretability methods across different approaches and models on CPU and GPU.

LIME Kernel SHAP
Shapley Value

Sampling
Partition SHAP

GPT-2 0:00:46 0:00:40 0:06:06 0:00:21

Mistral 7B 0:15:11 0:11:28 4:00:00

LlaMa 2 7B 0:12:02 0:11:45 4:00:00

0:00:00
0:28:48
0:57:36
1:26:24
1:55:12
2:24:00
2:52:48
3:21:36
3:50:24
4:19:12

R
u

n
ti

m
e

in
 h

h
:m

m
:s

s

Runtime Across Different Approaches (CPU)

LIME Kernel SHAP Shapley Value Sampling Partition SHAP

GPT-2 00:12 00:11 00:58 00:03

Mistral 7B 00:56 00:55 38:46

LlaMa 2 7B 00:53 00:53 42:46

00:00

07:12

14:24

21:36

28:48

36:00

43:12

50:24

R
u

n
ti

m
e

in
 m

m
:s

s

Runtime Across Different Approaches (GPU)

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XX

Prototype Evaluation Results

Data

Combined Prototype scoring in application- and human-grounded evaluation for both interpretability

approaches and delta in rating.

Input
Label

Application-Grounded Human Grounded
Combined
Delta

KernelSHAP
Attention
Visualization

Delta KernelSHAP
Attention
Visualization

Delta

A 2 1 +1,0 2 1 +1,0 +2,0

B 4 3 +1,0 5 3 +2,0 +3,0

C 3 2 +1,0 4 2 +2,0 +3,0

D 4 2 +2,0 4 1 +3,0 +5,0

E 3 2 +1,0 4 1 +3,0 +4,0

F 2 1 +1,0 2 1 +1,0 +2,0

G 5 3 +2,0 3 3 0,0 +2,0

H 3 3 0,0 4 2 +2,0 +2,0

I 4 1 +3,0 3 3 0,0 +3,0

J 4 1 +3,0 3 2 +1,0 +4,0

Avg 3,4 1,9 +1,5 3,4 1,9 +1,5 +3,0

Table of Test Input Data and Model Responses

Label User Message System Prompt Answer (shortened)

A Does money buy
happiness?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

Money can provide certain comforts and freedoms
that can contribute to overall well - being and
happiness, such as financial security […]

B Does money buy
happiness?

Respond from the perspective of a
billionaire enjoying life in Dubai.

From my personal experience living as a billion aire
in Dub ai, I ' d say that while money certainly
provides many comforts […]

C Who was the first
person to walk on the
Moon?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

Neil Arm strong was the first man to walk on the
moon. He took his famous " One small step for man,
one giant leap for man kind " […]

D When did living beings
first land on the Moon?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

I ' d be happy to help answer your question!
However, it seems there may be some confusion in
your query. The term " life beings " […]

E Why is the sky blue? You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

The color of the sky appears blue due to a
phenomenon called Ray le igh scattering. As sunlight
reaches Earth ' s atmosphere, […]

F Follow Up Question:
And why is the sky
black in the night?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

I apolog ize for any confusion earlier. Here ' s an
expanded explanation : The color of the sky varies
depending on atm ospher […]

G Who wrote 'Romeo
and Juliet'?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

The play " R ome o and Jul iet " was written by the
famous English poet and play wright William
Shakespeare around […]

H Follow up question:
What is 'Romeo and
Juliet' about?

You are a helpful, respectful, and
honest assistant. Always answer as
helpfully as possible, while being safe.

I apolog ize for any confusion earlier. Your message
did not contain […]

I What is the meaning of
life?

Respond as if you were a Buddhist
monk.

In Budd h ism, we believe that the meaning of life is
to find inner peace and en light en ment through
following the Eight fold Path.[]

J What is the meaning of
life?

Respond as if you were a nihilist. As a nihilist, I would argue that life inherently has
no meaning. The universe and all its events are
random and devoid of any ultimate purpose or
significance […]

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XXI

Graphics

Graphics displaying application-, human-grounded helpfulness scoring and combined score delta.

0,0

+1,0

+2,0

+3,0

0,0

+1,0

+2,0

+3,0

A B C D E F G H I J

C
o

m
b

in
ed

 S
co

re
 D

el
ta

Si
n

gl
e

Sc
o

re
 D

el
ta

Test Input Label

Score Delta

Combined Delta α - Delta η - Delta

0

1

2

3

4

5

A B C D E F G H I J

Sc
o

re
 (

1
-5

)

Test Input Label

Application Based Evaluation and Score Delta

α - KernelSHAP α - Attention α - Delta

0

1

2

3

4

5

A B C D E F G H I J

Sc
o

re
 (

1
-5

)

Test Input Label

Human Based Evaluation and Score Delta

η - KernelSHAP η - Attention η - Delta

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XXII

Selected Explanations for Mistral 7B

Sequence Attribution Graphs

Mistral 7B sequence attribution graphic creating using KernelSHAP.

Mistral 7B sequence attribution graphic creating using LIME.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XXIII

Token Wise Attribution Graphic

Mistral 7B token to token attribution graphic creating using Shapley Value Sampling.

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XXIV

Overview of Used AI Tools

AI TOOL/ASSISTANT USAGE LINK

CHATGPT PLUS
rephrasing, broad questions and

research, programming help
https://chat.openai.com/

GITHUB COPILOT CHAT programming help https://github.com/features/copilot

GRAMMARLY
spelling, grammar, form, rephrasing,

plagiarism detection
https://www.grammarly.com/ai

ELICIT research https://elicit.com/

CONSENSUS.AI research https://consensus.app/

https://chat.openai.com/
https://github.com/features/copilot
https://www.grammarly.com/ai
https://elicit.com/
https://consensus.app/

Building an Interpretable Natural Language AI Tool based on Transformer Models and approaches of Explainable AI.

University of Applied Science for Technology and Business Berlin (HTW Berlin) | Wirtschaftsinformatik | Lennard Zündorf

XXV

Declaration of Autonomy

I declare that I have written this bachelor’s thesis independently and without outside help and have

not used any literature other than that specified. All passages taken verbatim from other authors, as

well as those closely based on the ideas of other authors, are specially marked.

This thesis has not been submitted to any other examination authority in the same or a similar form

and has not been published.

(Ich versichere hiermit, dass ich die vorliegende Bachelorarbeit selbstständig und ohne fremde Hilfe

angefertigt und keine andere als die angegebene Literatur benutzt habe. Alle von anderen Autoren

wörtlich übernommenen Stellen wie auch die sich an die Gedankengänge anderer Autoren eng

anlehnenden Ausführungen meiner Arbeit sind besonders gekennzeichnet.

Diese Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt

und auch nicht veröffentlicht.)

Berlin, 14.02.2024

X
Lennard Zündorf

